Advertisement

Suprathermal Particles in XUV-Heated and Extended Exoplanetary Upper Atmospheres

  • Valery I. ShematovichEmail author
  • Dmitry V. Bisikalo
  • Dmitry E. Ionov
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 411)

Abstract

The photolysis of hydrogen-rich atmosphere of a close-in exoplanet by the extreme ultraviolet radiation of the parent star leads to the formation of the suprathermal particles (i.e., particles with an excess of kinetic energy), primary photoelectrons in the \(H_{2}/H/\mathit{He}\) ionization and hydrogen atoms in the H 2 dissociation and dissociative ionization processes. These particles with excess kinetic energies are an important source of thermal energy in the upper atmosphere of the hydrogen-rich exoplanets. In the contemporary aeronomical models the kinetics and transfer of hot hydrogen atoms and fresh photoelectrons were not calculated in detail, because they require solving of the Boltzmann equation for a non-thermal population of these particles. This chapter estimates the effect of the XUV radiation of the parent star on the production of the suprathermals in the \(H_{2} \rightarrow H\) transition region in the upper atmosphere of a hydrogen-rich exoplanet. Partial deposition rates of the stellar XUV radiation due to the photolytic processes in the \(H_{2} \rightarrow H\) transition region in the upper atmosphere of HD 209458b were calculated. The Monte Carlo model developed by authors was used to calculate the collisional kinetics and the transport of photoelectrons in the atmosphere of HD209458b. Using this model the partial deposition rates of the stellar XUV radiation due to the electron impact processes in the \(H_{2} \rightarrow H\) transition region in the upper atmosphere of HD209458b were calculated. This allowed us to estimate the heating rate of the atmospheric gas by photoelectrons in the upper atmosphere of exoplanet. For the first time the heating efficiency η with and without taking into account the photoelectron impact processes in the \(H_{2} \rightarrow H\) transition region in the hydrogen-rich atmosphere of exoplanet was calculated. Using the numerical stochastic model for a hot planetary corona the kinetics and transfer of suprathermal hydrogen atoms in the upper atmosphere and the emergent flux of atoms evaporating from the atmosphere were investigated. The latter is estimated as \(5.8 \times 10^{12}\,\text{cm}^{-2}\text{s}^{-1}\) for a moderate stellar activity level of UV radiation, which leads to a planetary atmosphere evaporation rate of 5. 8 × 109 g/s due to the process of the dissociation of H 2. This estimate shows that suprathermal hydrogen atoms provide a significant contribution to the observational estimate of ∼ 1010 g/s for the atmospheric loss rate of HD 209458b.

Keywords

Solar Wind Direct Simulation Monte Carlo Planetary Atmosphere Roche Lobe Dissociative Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the support by the International Space Science Institute (ISSI) in Bern, Switzerland and the ISSI team Characterizing stellar- and exoplanetary environments. The authors also acknowledge the support by the RSCF project 14-12-01048. Finally, V.I. Shematovich and D. V. Bisikalo thank Lotfi Ben-Jaffel from the Institut Astrophysique de Paris (IAP) CNRS-UPMC, Paris and Tommi Koskinen from the Lunar and Planetary Laboratory University of Arizona, Tucson, USA for fruitful discussions.

References

  1. Abgrall, H., Roueff, E., Liu, X., & Shemansky, D. E. (1997). Astrophysics Journal, 481, 557.ADSCrossRefGoogle Scholar
  2. Ajello, J. M. Kanik, I., Ahmed, S. M., & Clarke, J. T. (1985). Journal of Geophysical Research, 100, 26411.ADSCrossRefGoogle Scholar
  3. Ballester, G. E., Sing, D. K., & Herbert, F. (2007). Nature, 445, 511.ADSCrossRefGoogle Scholar
  4. Ben-Jaffel, L. (2007). Astrophysics Journal (Letters), 671, L61.ADSCrossRefGoogle Scholar
  5. Ben-Jaffel, L., & Sona Hosseini, S. (2010). Astrophysics Journal, 709, 1284.ADSCrossRefGoogle Scholar
  6. Bird, G. A. (1994). Molecular gas dynamics and direct simulation of gas flows. New York: Oxford University Press.Google Scholar
  7. Bisikalo, D. V., Shematovich, V. I., & Gerard, J. C., (1995). Journal of Geophysical Research, 100, 3715.ADSCrossRefGoogle Scholar
  8. Bisikalo, D. V., Shematovich, V. I., Gérard, J. C., Gladstone, G. R., & Waite, J. H. (1996). Journal of Geophysical Research, 101, 21157.ADSCrossRefGoogle Scholar
  9. Bisikalo, D. V., Kaygorodov, P. V., Ionov, D. E., Shematovich, V. I., Lammer, H., & Fossati, L. (2013a). Astrophysics Journal, 764, 19.ADSCrossRefGoogle Scholar
  10. Bisikalo, D. V., Kaygorodov, P. V., Ionov, D. E., & Shematovich, V. I. (2013b). Astronomy Reports, 57, 715.ADSCrossRefGoogle Scholar
  11. Bisikalo, D. V., Kaygorodov, P. V., Ionov, D. E., & Shematovich, V. I. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 81–104). Heidelberg/New York: Springer.Google Scholar
  12. Bourrier, V., & Lecavelier des Etangs, A. (2013). Astronomy and Astrophysics, 551, A124.Google Scholar
  13. Cecchi-Pestellini, C., Ciaravella, A., & Micela, G. (2006). Astronomy and Astrophysics, 458, L13.ADSCrossRefGoogle Scholar
  14. Cecchi-Pestellini, C., Ciaravella, A., Micela, G., & Penz, T. (2009). Astronomy and Astrophysics, 496, 863.ADSCrossRefGoogle Scholar
  15. Chamberlain, J. W., & Hunten, D. M. (1987). Theory of planetary atmospheres. An introduction to their physics and chemistry. Orlando: Academic Press.Google Scholar
  16. Dalgarno, A., Yan, M., Liu, W. (1999). Astrophysics Journal Supplement, 125, 237.ADSCrossRefGoogle Scholar
  17. Ehrenreich, D., Lecavelier des Etangs, A., Hébrard, G., Désert, J. M., Vidal-Madjar, A., McConnell, J. C., Parkinson, C. D., Ballester, G. E., & Ferlet, R. (2008). Astronomy and Astrophysics, 483, 933.Google Scholar
  18. Ekenbäck, A., Holmström, M., Wurz, P., Grießmeier, J. M., Lammer, H., Selsis, F., & Penz, T. (2010). Astrophysics Journal, 709, 670.ADSCrossRefGoogle Scholar
  19. Erkaev, N. V., Kulikov, Yu. N., Lammer, H., Selsis, F., Langmayr, D., Jaritz, G. F., & Biernat, H. K. (2007). Astronomy and Astrophysics, 472, 329.ADSCrossRefGoogle Scholar
  20. Fossati, L., Haswell, C. A., Linsky, J. L., & Kislyakova, K. G. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 59–80). Heidelberg/New York: Springer.Google Scholar
  21. Fox, J. L. & Hać, A. (1997). Journal of Geophysical Research, 102, 24005.ADSCrossRefGoogle Scholar
  22. Fox, J. L., & Hać, A. B. (2009). Icarus, 204, 527.ADSCrossRefGoogle Scholar
  23. Fox, J. L., Galand, M. I., & Johnson, R. E. (2008). Space Science Reviews, 139, 3.ADSCrossRefGoogle Scholar
  24. García Muñoz, A. (2007). Planetary and Space Science, 55, 1426.ADSCrossRefGoogle Scholar
  25. Garvey, R. H., & Green, A. E. S. (1976). Physical Review A, 14, 946.ADSCrossRefGoogle Scholar
  26. Garvey, R. H., Porter, H. S., & Green, A. J. (1977). Applied Physics, 48, 4353.CrossRefGoogle Scholar
  27. Gerard, J. C., Richards, P. G., Shematovich, V. I., & Bisikalo, D. V. (1995). Geophysical Research Letters, 22, 279.ADSCrossRefGoogle Scholar
  28. Gérard, J. C., Hubert, B., Bisikalo, D. V., & Shematovich, V. I. (2000). Journal of Geophysical Research, 105, 15795.ADSCrossRefGoogle Scholar
  29. Glass-Maujean, M. (1986). Physical Review A, 33, 342.ADSCrossRefGoogle Scholar
  30. Green, A. E. S., & Sawada, T. (1972). Journal of Atmospheric and Terrestrial Physics, 34, 1719.ADSCrossRefGoogle Scholar
  31. Gröller, H., Shematovich, V. I., Lichtenegger, H. I. M., Lammer, H., Pfleger, M., Kulikov, Yu. N., Macher, W., Amerstorfer, U. V., & Biernat, H. K. (2010). Journal of Geophysical Research, 115, 12017.CrossRefGoogle Scholar
  32. Hodges, R. R. Jr., & Breig, E. L., (1991). Journal of Geophysical Research, 96, 7697.ADSCrossRefGoogle Scholar
  33. Holmström, M., Ekenbäck, A., Selsis, F., Penz, T., Lammer, H., & Wurz, P. (2008). Nature, 451, 970.ADSCrossRefGoogle Scholar
  34. Hubert, B., Gérard, J. C., Cotton, D. M., Bisikalo, D. V., & Shematovich, V. I. (1999). Journal of Geophysical Research, 104, 17139.ADSCrossRefGoogle Scholar
  35. Hubert, B., Gérard, J. C., Killeen, T. L., Wu, Q., Bisikalo, D. V., & Shematovich, V. I. (2001). Journal of Geophysical Research, 106, 12753.ADSCrossRefGoogle Scholar
  36. Huebner, W. F., Keady, J. J., & Lyon, S. P. (1992). Astrophysics and Space Science, 195, 1.ADSCrossRefGoogle Scholar
  37. Ivanov, M. S., & Rogazinskij, S. V. (1988). Sov. J. Numer. Anal. Math. Modell., 453Google Scholar
  38. Jackman, C. H., Garvey, R. H., & Green, A. E. S. (1977). Journal of Geophysical Research, 82, 5081.ADSCrossRefGoogle Scholar
  39. Johnson, R. E., Combi, M. R., Fox, J. L., Ip, W. H., Leblanc, F., & McGrath, M. A., Shematovich, V. I., Strobel, D. F., & Waite, J. H. (2008). Space Science Reviews, 139, 355.Google Scholar
  40. Kislyakova, K. G., Holmström, M., Lammer, H., Erkaev, N. V., (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 137–150). Heidelberg/New York: Springer.Google Scholar
  41. Koskinen, T. T., Yelle, R. V., Lavvas, P., & Lewis, N. K. (2010). Astrophysics Journal, 723, 116.ADSCrossRefGoogle Scholar
  42. Koskinen, T. T., Harris, M. J., Yelle, R. V., & Lavvas, P. (2013). Icarus, 226, 1678.ADSCrossRefGoogle Scholar
  43. Krestyanikova, M. A., & Shematovich, V. I. (2005). Solar System Research, 39, 22.ADSCrossRefGoogle Scholar
  44. Krestyanikova, M. A., & Shematovich, V. I. (2006). Solar System Research, 40, 384.ADSCrossRefGoogle Scholar
  45. Krstić, P. S., & Schultz, D. R. (1999a). Physical Review A, 60, 2118.ADSCrossRefGoogle Scholar
  46. Krstić, P. S., & Schultz, D. R. (1999b). Journal of Physics B: Atomic and Molecular Physics, 32, 3485.ADSCrossRefGoogle Scholar
  47. Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., Bauer, S. J., & Weiss, W. W. W. (2003). Astrophysics Journal (Letters), 598, L121.ADSCrossRefGoogle Scholar
  48. Lammer, H., Odert, P., Leitzinger, M., Khodachenko, M. L., Panchenko, M., Kulikov, Yu. N., Zhang, T. L., Lichtenegger, H. I. M., Erkaev, N. V., Wuchterl, G., Micela, G., Penz, T., Biernat, H. K., Weingrill, J., Steller, M., Ottacher, H., Hasiba, J., & Hanslmeier, A. (2009). Astronomy and Astrophysics, 506, 399.ADSCrossRefGoogle Scholar
  49. Lammer, H., Kislyakova, K. G., Holmström, M., Khodachenko, M. L., & Grießmeier, J. M. (2011). Astrophysics and Space Science, 335, 9.ADSCrossRefGoogle Scholar
  50. Lammer, H., Güdel, M., Kulikov, Yu. N., Ribas, I., Zaqarashvili, T. V., Khodachenko, M. L., Kislyakova, K. G., Gröller, H., Odert, P., Leitzinger, M., Fichtinger, B., Krauss, S., Hausleitner, W., Holmström, M., Sanz-Forcada, J., Lichtenegger, H. I. M., Hanslmeier, A., Shematovich, V. I., Bisikalo, D. V., Rauer, H., Fridlund, M. (2012). Earth Planets Space, 64, 179.ADSCrossRefGoogle Scholar
  51. Lecavelier des Etangs, A., Vidal-Madjar, A., McConnell, J. C., & Hébrard, G. (2004). Astronomy and Astrophysics, 418, L1.Google Scholar
  52. Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G. E., Désert, J. M., Ferlet, R., Hébrard, G., Sing, D. K., Tchakoumegni, K. O., & Udry, S. (2010). Astronomy and Astrophysics, 514, A72.Google Scholar
  53. Lecavelier des Etangs, A., Bourrier, V., Wheatley, P. J., Dupuy, H., Ehrenreich, D., Vidal-Madjar, A., Hébrard, G., Ballester, G. E., Désert, J. M., Ferlet, R., Sing, & D. K. (2012). Astronomy and Astrophysics, 543, L4.Google Scholar
  54. Linsky, J. L., Yang, H., France, K., Froning, C. S., Green, J. C., Stocke, J. T., & Osterman, S. N. (2010). Astrophysics Journal, 717, 1291.ADSCrossRefGoogle Scholar
  55. Marov, M. Y., Shematovich, V. I., & Bisicalo, D. V. (1996). Space Science Reviews, 76, 1.ADSCrossRefGoogle Scholar
  56. Nagy, A. F., Kim, J., & Cravens, T. E. (1990). Annales Geophysicae, 8, 251.ADSGoogle Scholar
  57. Opal, C. B., Peterson, W. K., & Beaty, E. C. (1971). Journal of Chemical Physics, 55, 4100.ADSCrossRefGoogle Scholar
  58. Penz, T., Erkaev, N. V., Kulikov, Yu. N., Langmayr, D., Lammer, H., Micela, G., Cecchi-Pestellini, C., Biernat, H. K., Selsis, F., Barge, P., Deleuil, M., & Léger, A. (2008). Planetary and Space Science, 56, 1260.ADSCrossRefGoogle Scholar
  59. Rjasanow, S., Schreiber, T., & Wagner, W. (1998). Journal of Computational Physics, 145, 382.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  60. Shematovich, V. I. (2004). Solar System Research, 38, 28.ADSCrossRefGoogle Scholar
  61. Shematovich, V. I. (2007). In Proceedings of 25th International Symposium on Rarefied Gas Dynamics, Siberian Branch of the Russian Academy of Sciences, 953.Google Scholar
  62. Shematovich, V. I. (2008). In T. Abe (Ed.), American Institute of Physics Conference Series, (2008), 1084, 1047.Google Scholar
  63. Shematovich, V. I. (2010). Solar System Research, 44, 96.ADSCrossRefGoogle Scholar
  64. Shematovich, V.I., Bisikalo, D. V., & Gerard, J. C. (1994). Journal of Geophysical Research, 99, 23217.ADSCrossRefGoogle Scholar
  65. Shematovich, V., Gérard, J. C., Bisikalo, D. V., & Hubert, B. (1999). Journal of Geophysical Research, 104, 4287.ADSCrossRefGoogle Scholar
  66. Shematovich, V. I., Bisikalo, D. V., & Gérard, J. C. (2005). Geophysical Research Letters, 32, L02105.ADSCrossRefGoogle Scholar
  67. Shizgal, B. D., & Arkos, G. G. (1996). Reviews of Geophysics, 34, 483.ADSCrossRefGoogle Scholar
  68. Shyn, T. W., & Sharp, W. E. (1981). Physical Review A, 24, 1734.ADSCrossRefGoogle Scholar
  69. van Kampen, A. G. (1984). Stochastic processes in physics and chemistry. Amsterdam: North-Holland.Google Scholar
  70. van Zyl, B., & Stephen, T. M. (1994). Physical Review A, 50, 3164.ADSCrossRefGoogle Scholar
  71. Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J. M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. (2003). Nature, 422, 143.Google Scholar
  72. Vidal-Madjar, A., Désert, J. M., Lecavelier des Etangs, A., Hébrard, G., Ballester, G. E., Ehrenreich, D., Ferlet, R., McConnell, J. C., Mayor, M., & Parkinson, C. D. (2004). Astrophysics Journal (Letters), 604, L69.Google Scholar
  73. Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J. M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. (2008). Astrophysics Journal (Letters), 676, L57.Google Scholar
  74. Wayne, R. P. (1991). Chemistry of atmospheres. Oxford: Clarendon Press.Google Scholar
  75. Yelle, R. V. (2004). Icarus, 170, 167.ADSCrossRefGoogle Scholar
  76. Yelle, R. V. (2006). Icarus, 183, 508.ADSCrossRefGoogle Scholar
  77. Yelle, R. V., Lammer, H., & Ip, W. H. (2008). Space Science Reviews, 139, 437.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Valery I. Shematovich
    • 1
    Email author
  • Dmitry V. Bisikalo
    • 1
  • Dmitry E. Ionov
    • 1
  1. 1.Russian Academy of Sciences, Institute of AstronomyMoscowRussian Federation

Personalised recommendations