Types of Hot Jupiter Atmospheres

  • Dmitry V. BisikaloEmail author
  • Pavel V. Kaygorodov
  • Dmitry E. Ionov
  • Valery I. Shematovich
Part of the Astrophysics and Space Science Library book series (ASSL, volume 411)


Hot Jupiters, i.e. exoplanet gas giants, having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1 AU, are a unique class of objects. Since they are so close to the host stars, their atmospheres form and evolve under the action of very active gas dynamical processes caused by the gravitational field and irradiation of the host star. As a matter of fact, the atmospheres of several of these planets fill their Roche lobes , which results in a powerful outflow of material from the planet towards the host star. The energy budget of this process is so important that it almost solely governs the evolution of hot Jupiters gaseous envelopes. Based on the years of experience in the simulations of gas dynamics in mass-exchanging close binary stars, we have investigated specific features of hot Jupiters atmospheres. The analytical estimates and results of 3D numerical simulations, discussed in this Chapter, show that the gaseous envelopes around hot Jupiters may be significantly non-spherical and, at the same time, stationary and long-lived. These results are of fundamental importance for the interpretation of observational data.


Shock Wave Mass Loss Rate Stellar Wind Contact Discontinuity Lagrangian Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support by the International Space Science Institute (ISSI) in Bern, Switzerland and the ISSI team Characterizing stellar- and exoplanetary environments and thank L. Fossati from the Argelander-Institut für Astronomie der Universität Bonn, Germany, Lotfi Ben-Jaffel from the Institut Astrophysique de Paris (IAP) CNRS-UPMC, Paris and Tommi Koskinen from the Lunar and Planetary Laboratory University of Arizona, Tucson, USA for fruitful discussions. The authors also acknowledge the support by the RFBR projects 12-02-00047 and 14-02-00215.


  1. Baranov, V. B., & Krasnobaev, K. V. (1977). Hydrodynamic theory of a cosmic plasma. Moscow: Izdatel Nauka.Google Scholar
  2. Ben-Jaffel, L. (2007). Astrophysical Journal Letters, 671, L61.ADSCrossRefGoogle Scholar
  3. Ben-Jaffel, L., & Sona Hosseini, S. (2010). Astrophysical Journal, 709, 1284.ADSCrossRefGoogle Scholar
  4. Bisikalo, D. V., Boyarchuk, A. A., Kaigorodov, P. V., Kuznetsov, O. A., & Matsuda, T. (2004). Astronomy Reports, 48, 449.ADSCrossRefGoogle Scholar
  5. Bisikalo, D. V., Kaygorodov, P. V., Ionov, D. E., Shematovich, V. I., Lammer, H., & Fossati, L. (2013a). Astrophysical Journal, 764, 19.ADSCrossRefGoogle Scholar
  6. Bisikalo, D. V., Kaigorodov, P. V., Ionov, D. E., & Shematovich, V. I. (2013b). Astronomy Reports, 57, 715.ADSCrossRefGoogle Scholar
  7. Bisikalo, D. V., Kaygorodov, P. V., & Ionov, D. E. (2013c). In N. V. Pogorelov, E. Audit, G. P. Zank (Eds.), Numerical modeling of space plasma flows (Astronomical Society of the Pacific Conference Series, vol 474, pp. 41). San Francisco: Astronomical Society of the Pacific.Google Scholar
  8. Bisikalo, D. V., Zhilkin A. G., & Boyarchuk A. A. (2013d). Gas dynamic close binary stars (in Russian). Moscow: Physmatlit.Google Scholar
  9. Boyarchuk, A. A., Bisikalo, D. V., Kuznetsov, O. A., & Chechetkin, V. M. (2002). Mass Transfer in Close Binary Stars (Advances in astronomy and astrophysics, Vol. 6, pp 1–365). London and New York: Francis & Taylor.Google Scholar
  10. Campo, C. J., Harrington, J., Hardy, R. A., Stevenson, K. B., Nymeyer, S., Ragozzine, D., Lust, N. B., Anderson, D. R., Collier-Cameron, A., Blecic, J., Britt, C. B. T., Bowman, W. C., Wheatley, P. J., Loredo, T. J., Deming, D., Hebb, L., Hellier, C., Maxted, P. F. L., Pollaco, D., & West, R. G. (2011). Astrophysical Journal, 727, 125.ADSCrossRefGoogle Scholar
  11. Chan, T., Ingemyr, M., Winn, J. N., Holman, M. N., Sanchis-Ojeda, R., Esquerdo, G., & Everett, M. (2011). Astrophysical Journal, 141, 179.ADSGoogle Scholar
  12. Cherenkov, A. A., Bisikalo, D. V., & Kaigorodov, P. V. (2014). Astronomy Reports, 58, 679.ADSCrossRefGoogle Scholar
  13. Fossati, L., Haswell, C. A., Froning, C. S., Hebb, L., Holmes, S., Kolb, U., Helling, C., Carter, A., Wheatley, P., Collier Cameron, A., Loeillet, B., Pollacco, D., Street, R., Stempels, H. C., Simpson, E., Udry, S., Joshi, Y. C., West, R. G., Skillen, I., & Wilson, D. (2010a). Astrophysical Journal Letters, 714, L222.ADSCrossRefGoogle Scholar
  14. Fossati, L., Bagnulo, S., Elmasli, A., Haswell, C. A., Holmes, S., Kochukhov, O., Shkolnik, E. L., Shulyak, D. V., Bohlender, D., Albayrak, B., Froning, C., & Hebb, L. (2010b). Astrophysical Journal, 720, 872.ADSCrossRefGoogle Scholar
  15. Fossati, L., Haswell, C. A., Linsky, J. L., & Kislyakova, K. G. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 59). Heidelberg/New York: Springer.Google Scholar
  16. García Muñoz, A. (2007). Planetary and Space Science, 55, 1426.ADSCrossRefGoogle Scholar
  17. Haswell, C. A., Fossati, L., Ayres, T., France, K., Froning, C. S., Holmes, S., Kolb, U. C., Busuttil, R., Street, R. A., Hebb, L., Collier Cameron, A., Enoch, B., Burwitz, V., Rodriguez, J., West, R. G., Pollacco, D., Wheatley, P. J., & Carter, A. (2012). Astrophysical Journal, 760, 79.ADSCrossRefGoogle Scholar
  18. Hebb, L., Collier-Cameron, A., Loeillet, B., Pollacco, D., Hébrard, G., Street, R. A., Bouchy, F., Stempels, H. C., Moutou, C., Simpson, E., Udry, S., Joshi, Y. C., West, R. G., Skillen, I., Wilson, D. M., McDonald, I., Gibson, N. P., Aigrain, S., Anderson, D. R., Benn, C. R., Christian, D. J., Enoch, B., Haswell, C. A., Hellier, C., Horne, K., Irwin, J., Lister, T. A., Maxted, P., Mayor, M., Norton, A. J., Parley, N., Pont, F., Queloz, D., Smalley, B., & Wheatley, P. J. (2009). Astrophysical Journal, 693, 1920.ADSCrossRefGoogle Scholar
  19. Ionov, D. E., Bisikalo, D. V., Kaygorodov, P. V., Shematovich, V. i. (2012). In M. T. Richards & I. Hubeny (Eds.), From interacting binaries to exoplanets: Essential modelling tools (IAU symposium, Vol. 282, pp. 545). Cambridge: Cambridge University PressGoogle Scholar
  20. Koskinen, T. T., Yelle, R. V., Lavvas, P., & Lewis, N. K. (2010). Astrophysical Journal, 723, 116.ADSCrossRefGoogle Scholar
  21. Koskinen, T. T., Harris, M. J., Yelle, R. V., & Lavvas, P. (2013). Icarus 226, 1678.ADSCrossRefGoogle Scholar
  22. Lai, D., Helling, C., & van den Heuvel, E. P. J. (2010). Astrophysical Journal, 721, 923.ADSCrossRefGoogle Scholar
  23. Landau, L. D., & Lifshitz, E. M. (1966). Hydrodynamik, Lehrbuch der theoretischen Physik. Berlin: Akademie-Verlag.Google Scholar
  24. Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G. E., Désert, J. M., Ferlet, R., Hébrard, G., Sing, D. K., Tchakoumegni, K. O., & Udry, S. (2010). Astronomy and Astrophysics, 514, A72.Google Scholar
  25. Li, S. L., Miller, N., Lin, D. N. C., & Fortney, J. J. (2010). Nature, 463, 1054.ADSCrossRefGoogle Scholar
  26. Linsky, J. L., Yang, H., France, K., Froning, C. S., Green, J. C., Stocke, J. T., & Osterman, S. N. (2010). Astrophysical Journal, 717, 1291.ADSCrossRefGoogle Scholar
  27. Lubow, S. H., & Shu, F. H. (1975). Astrophysical Journal, 198, 383.ADSCrossRefGoogle Scholar
  28. Murray-Clay, R. A., Chiang, E. I., & Murray, N. (2009). Astrophysical Journal, 693, 23.ADSCrossRefGoogle Scholar
  29. Pringle, J. E., & Wade, R. A. (1985). Interacting binary stars (Cambridge astrophysics series). Cambridge: Cambridge University Press.Google Scholar
  30. Savonije, G. J. (1979). Astronomy and Astrophysics, 71, 352.ADSGoogle Scholar
  31. Verigin, M., Slavin, J., Szabo, A., Gombosi, T., Kotova, G., Plochova, O., Szegö, K., Tátrallyay, M., Kabin, K., & Shugaev, F. (2003). Journal of Geophysical Research, 108, 1323.CrossRefGoogle Scholar
  32. Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. (2003). Nature, 422, 143.Google Scholar
  33. Vidal-Madjar, A., Désert, J. M., Lecavelier des Etangs, A., Hébrard, G., Ballester, G. E., Ehrenreich, D., Ferlet, R., McConnell, J. C., Mayor, M., & Parkinson, C. D. (2004). Astrophysical Journal Letters, 604, L69.Google Scholar
  34. Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J. M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. (2008). Astrophysical Journal Letters, 676, L57.Google Scholar
  35. Vidotto, A. A., Jardine, M., Morin, J., Donati, J. F., Lang, P., & Russell, A. J. P. (2013). Astronomy and Astrophysics, 557, A67.ADSCrossRefGoogle Scholar
  36. Vidotto, A. A., Bisikalo, D. V., Fossati, L., & Llama, J. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 153). Heidelberg/ New York: Springer.Google Scholar
  37. Withbroe, G. L. (1988). Astrophysical Journal, 325, 442.ADSCrossRefGoogle Scholar
  38. Wood, B. E., Linsky, J. L., & Güdel, M. (2014). In H. Lammer & M. L. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments (pp. 19). Heidelberg/New York: Springer.Google Scholar
  39. Yelle, R. V. (2004). Icarus, 170, 167.ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dmitry V. Bisikalo
    • 1
    Email author
  • Pavel V. Kaygorodov
    • 1
  • Dmitry E. Ionov
    • 1
  • Valery I. Shematovich
    • 1
  1. 1.Institute of Astronomy of the Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations