Skip to main content

Models for Calculating Spatial Similarity Degrees in Multiscale Map Spaces

  • Chapter
  • First Online:
Spatial Similarity Relations in Multi-scale Map Spaces
  • 752 Accesses

Abstract

It is a challenge work to propose new models for calculating spatial similarity degrees between objects in multiscale map spaces. In this chapter, ten new models are proposed. Three models are for individual objects and the other seven models are for object groups. To be exact, the former comprises the models for individual point objects, individual linear objects, and individual areal objects, and the latter comprises the models for point clouds, parallel line clusters, intersected line networks, tree-like networks, discrete polygon groups, connected polygon groups, and maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt H, Godau M (1995) Computing the Fréchet distance between two polygonal curves. Int J Comput Geom Appl 5:75–91

    Article  Google Scholar 

  • Alt H, Fuchs U, Rote G, Weber G (1998) Matching convex shapes with respect to the symmetric difference. Algorithmica 21:89–103

    Article  Google Scholar 

  • Aurenhammer F (1991) Voronoi Diagram—a survey of a fundamental geometric data structure. ACM Comput Surv 23(3):345–405

    Article  Google Scholar 

  • Bader M, Weibel R (1997) Detecting and resolving size and proximity conflicts in the generalisation of polygon maps. In: Proceedings of the 18th International cartographic conference, Stockholm, Sweden, pp 1525–1532

    Google Scholar 

  • Bader M, Barrault M, Weibel R (2005) Building displacement over a ductile truss. Int J Geogr Inform Sci 19(8–9):915–936

    Article  Google Scholar 

  • Barber P (2005) The map book, London: Weidenfeld and Nicolson. pp 232, 250

    Google Scholar 

  • Berry JK (1993) Beyond mapping: concepts, algorithms and issues in GIS. Wiley, New York, 246 pp

    Google Scholar 

  • Bjørke JT (2004) Topological relations between fuzzy regions: derivation of verbal terms. Fuzzy Set Syst 141(3):449–467

    Article  Google Scholar 

  • Boffet A, Rocca Serra S (2001) Identification of spatial structures within urban blocks for town characterization. In: Proceedings of the 20th international cartographic conference, Beijing, China. (CD-ROM)

    Google Scholar 

  • Boots B, Csillag F (2006) Categorical maps, comparisons, and confidence. J Geogr Syst 8:109–118

    Article  Google Scholar 

  • Butler LK, Ries L, Bisson I, Hayden TJ, Wikelski MM, Romero LM (2013) Opposite but analogous effects of road density on songbirds with contrasting habitat preferences. Anim Conservat 16(1):77–85

    Article  Google Scholar 

  • Chen J, Li C, Li Z, Gold C (2001) A Voronoi-based 9-Intersection model for spatial relations. Int J Geogr Inform Sci 15(3):201–220

    Article  Google Scholar 

  • Christophe S, Ruas A (2002) Detecting building alignments for generalisation purposes. In: Richardson DE, van Oosterom P (eds) Proceedings of the 10th international symposium on spatial data handling. Springer, Berlin, pp 419–432

    Chapter  Google Scholar 

  • Clementini E, Sharma J, Egenhofer MJ (1994) Modeling topological spatial relations: strategies for query processing. Comput Graph 18(6):815–822

    Article  Google Scholar 

  • Csillag F, Boots B (2004) Toward comparing maps as spatial processes. In: Fisher P (ed) Developments in spatial data handling. Springer, Heidelberg, p 641

    Google Scholar 

  • de Serres B, Roy A (1990) Flow direction and branching geometry at junctions in Dendritic river networks. Prof Geogr 42(2):149–201

    Article  Google Scholar 

  • Douglas D, Peucker T (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer 10(2):112–122

    Article  Google Scholar 

  • Du S, Qin Q, Wang Q, Ma H (2008) Evaluating structural and topological consistency of complex regions with broad boundaries in multi-resolution spatial databases. Inform Sci 178(1):52–68

    Article  Google Scholar 

  • Egenhofer MJ, Clementini E, Di Felice P (1994) Topological relations between regions with holes. Int J Geogr Inform Syst 8(2):129–144

    Google Scholar 

  • Formica A, Pourabbas E, Rafanelli M (2013) Constraint relaxation of the polygon-polyline topological relation for geographic pictorial query languages. Comput Sci Inf Syst 10(3):1053–1075

    Article  Google Scholar 

  • Goyal RK (2000) Similarity assessment for cardinal directions between extended spatial objects. PhD Thesis, The University of Maine, USA

    Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156

    Article  Google Scholar 

  • Hagen A (2003) Fuzzy set approach to assessing similarity of categorical maps. Int J Geogr Inform Sci 17:235–249

    Article  Google Scholar 

  • Harvey PDA (1980) The history of topographical maps: symbols, pictures and surveys. Thames and Hudson, London, p 9

    Google Scholar 

  • Hong J (1994) Qualitative distance and direction reasoning in geographic space. PhD Thesis, University of Maine, USA

    Google Scholar 

  • Horton H (1945) Erosional development of streams and their drainage basins—hydrophysical approach to quantitative morphology. Bull Geol Soc Am 56:275–370

    Article  Google Scholar 

  • Knuth D (1997) The art of computer programming: fundamental algorithms, 3rd edn. Addison-Wesley, Reading, pp 308–423, Section 2.3: Trees

    Google Scholar 

  • La Barbera P, Rosso R (1989) On the fractal dimensions of stream network. Water Resour Res 25(4):735–741

    Article  Google Scholar 

  • Li C, Chen J, Li Z (1999) A raster-based method for computing Voronoi Diagrams of spatial objects using dynamic distance transformation. Int J Geogr Inform Sci 13(3):209–225

    Article  Google Scholar 

  • Li Z, Yan H, Ai T, Chen J (2004) Automated building generalization based on urban morphology and gestalt theory. Int J Geogr Inform Sci 18(5):513–534

    Article  Google Scholar 

  • Liu YL (2002) Categorical database generalization in GIS. PhD Thesis, Utrecht University, The Netherlands

    Google Scholar 

  • Milenkovic VJ (1998) Rotational polygon overlap minimization and compaction. Comput Geom: Theor Appl 10(4):305–318

    Article  Google Scholar 

  • Mokhtarian F, Mackworth AK (1992) A theory of multi-scale, curvature-based representation for planar curves. IEEE Trans Pattern Anal Mach Intell 14(8):789–805

    Article  Google Scholar 

  • Palmer SE (1992) Common region: a new principle of perceptual grouping. Cogn Psychol 24(2):436–447

    Article  Google Scholar 

  • Peuquet D, Zhan CX (1987) An algorithm to determine the directional relation between arbitrarily-shaped polygons in the plane. Pattern Recogn 20(1):65–74

    Article  Google Scholar 

  • Rainsford D, Mackaness W (2002) Template matching in support of generalization of rural buildings. In: Richardson DE, van Oosterom P (eds) Proceedings of the 10th international symposium on spatial data handling. Springer, Berlin, pp 137–151

    Chapter  Google Scholar 

  • Regnauld N (2001) Contextual building typification in automated map generalization. Algorithmica 30(2):312–333

    Article  Google Scholar 

  • Remmel TK, Fortin MJ (2013) Categorical, class-focused map patterns: characterization and comparison. Landsc Ecol 28:1587–1599

    Article  Google Scholar 

  • Rock I (1996) Indirect perception. MIT Press, London

    Google Scholar 

  • Ross R (1999) Fractal relation of mainstream length to catchment area in river networks. Water Resour Res 27(3):381–387

    Article  Google Scholar 

  • Ruas A (1998) A method for building displacement in automated map generalization. Int J Geogr Inform Sci 12(8):789–803

    Article  Google Scholar 

  • Sadahiro Y (1997) Cluster perception in the distribution of point objects. Cartographica 34:49–61

    Article  Google Scholar 

  • Sadahiro Y (2012) Exploratory analysis of polygons distributed with overlap. Geogr Anal 44(4):350–367

    Article  Google Scholar 

  • Thomson R, Brooks R (2002) Exploiting perceptual grouping for map analysis, understanding and generalization: the case of road and river networks. In: Blostein D, Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  • Uuemaa E, Antrop M, Roosaare J, Mander U (2009) Landscape metrics and indices: an overview of the use in landscape research. Living Rev Landscape Res 3:1–28

    Article  Google Scholar 

  • Yan HW (2010) Fundamental theories of spatial similarity relations in multi-scale map spaces. Chin Geogr Sci 20(1):18–22

    Article  Google Scholar 

  • Yan HW, Chu YD, Li ZL, Guo RZ (2006) A quantitative direction description model based on direction groups. Geoinformatica 10(2):177–196

    Article  Google Scholar 

  • Zhang QN (2006) Generalization of drainage network with density differences. Acta Geodaetica et Cartographica Sinica 35(2):191–196

    Google Scholar 

  • Zhang Q, Wang J, Peng X, Gong P, Shi P (2002) Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data. Int J Rem Sens 23(15):3057–3078

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yan, H., Li, J. (2015). Models for Calculating Spatial Similarity Degrees in Multiscale Map Spaces. In: Spatial Similarity Relations in Multi-scale Map Spaces. Springer, Cham. https://doi.org/10.1007/978-3-319-09743-5_4

Download citation

Publish with us

Policies and ethics