Skip to main content

The Countable Henkin Principle

  • Chapter

Part of the book series: Studies in Universal Logic ((SUL))

Abstract

This is a revised and extended version of an article that encapsulates a key aspect of the “Henkin method” in a general result about the existence of finitely consistent theories satisfying prescribed closure conditions. This principle can be used to give streamlined proofs of completeness for logical systems, in which inductive Henkin-style constructions are replaced by a demonstration that a certain theory “respects” some class of inference rules. The countable version of the principle has a special role and is applied here to omitting-types theorems, and to strong completeness proofs for first-order logic, omega-logic, countable fragments of languages with infinite conjunctions, and a propositional logic with probabilistic modalities. The paper concludes with a topological approach to the countable principle, using the Baire Category Theorem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aumann, R.J.: Interactive epistemology II: Probability. Int. J. Game Theory 28, 301–314 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barwise, J.: Admissible Sets and Structures. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  3. Chang, C.C., Keisler, H.J.: Model Theory, 2nd edn. North-Holland, Amsterdam (1977)

    Google Scholar 

  4. Friggens, D., Goldblatt, R.: A modal proof theory for final polynomial coalgebras. Theor. Comput. Sci. 360, 1–22 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldblatt, R.: Axiomatising the Logic of Computer Programming. Lecture Notes in Computer Science, vol. 130. Springer, Berlin (1982)

    MATH  Google Scholar 

  6. Goldblatt, R.: An abstract setting for Henkin proofs. Topoi 3, 37–41 (1984)

    Article  MathSciNet  Google Scholar 

  7. Goldblatt, R.: On the role of the Baire category theorem and dependent choice in the foundations of logic. J. Symb. Log. 50, 412–422 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldblatt, R.: An abstract setting for Henkin proofs. In: Mathematics of Modality, CSLI Lecture Notes, vol. 43, pp. 191–212. CSLI Publications, Stanford (1993). Expanded version of [6]

    Google Scholar 

  9. Goldblatt, R.: A framework for infinitary modal logic. In: Mathematics of Modality, CSLI Lecture Notes, vol. 43, pp. 213–229. CSLI Publications, Stanford (1993)

    Google Scholar 

  10. Goldblatt, R.: Deduction systems for coalgebras over measurable spaces. J. Log. Comput. 20(5), 1069–1100 (2010). doi:10.1093/logcom/exq029. Cited 12 December 2008

    Article  MathSciNet  MATH  Google Scholar 

  11. Heifetz, A., Mongin, Ph.: Probability logic for type spaces. Games Econ. Behav. 35, 31–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henkin, L.: The completeness of the first-order functional calculus. J. Symb. Log. 14, 159–166 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15, 81–91 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henkin, L.: A generalisation of the concept of ω-consistency. J. Symb. Log. 19, 183–196 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henkin, L.: A generalisation of the concept of ω-completeness. J. Symb. Log. 22, 1–14 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henkin, L.: The discovery of my completeness proofs. Bull. Symb. Log. 2(2), 127–158 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kozen, D., Larsen, K.G., Mardare, R., Panangaden, P.: Stone duality for Markov processes. In: Proceedings of the 28th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2013), pp. 321–330 (2013). Available via doi:10.1109/LICS.2013.38

    Chapter  Google Scholar 

  18. Orey, S.: ω-consistency and related properties. J. Symb. Log. 21, 246–252 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rasiowa, H., Sikorski, R.: A proof of the completeness theorem of Gödel. Fundam. Math. 37, 193–200 (1950)

    MathSciNet  MATH  Google Scholar 

  20. Sacks, G.E.: Saturated Model Theory. Benjamin, Reading (1972)

    MATH  Google Scholar 

  21. Zhou, Ch.: A Complete Deductive System for Probability Logic with Application to Harsanyi Type Spaces. Ph.D. thesis, India University (2007)

    Google Scholar 

  22. Zhou, Ch.: A complete deductive system for probability logic. J. Log. Comput. 19(6), 1427–1454 (2009)

    Article  MATH  Google Scholar 

  23. Zhou, Ch.: Intuitive probability logic. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011: Theory and Applications of Models of Computation—8th Annual Conference. Lecture Notes in Computer Science, vol. 6648, pp. 240–251. Springer, Berlin (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Goldblatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goldblatt, R. (2014). The Countable Henkin Principle. In: Manzano, M., Sain, I., Alonso, E. (eds) The Life and Work of Leon Henkin. Studies in Universal Logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-09719-0_13

Download citation

Publish with us

Policies and ethics