Skip to main content

Discussion About Different Methods for Introducing the Turbulent Boundary Layer Excitation in Vibroacoustic Models

  • Conference paper
  • First Online:
Flinovia - Flow Induced Noise and Vibration Issues and Aspects

Abstract

For controlling the noise radiated from vibrating structures excited by turbulent boundary layer (TBL) it is relevant to develop numerical tools for understanding how the structure reacts to TBL excitation. Usually, the wall pressure fluctuations of the TBL are described through statistical quantities (i.e. space-frequency or wavenumber-frequency spectra) which depend on the TBL parameters. On the other hand, the vibro-acoustic models (i.e. Finite Elements, Boundary Elements, Transfer Matrix Methods, Analytical models, etc.) evaluate deterministic transfer functions which characterise the response of the considered structures. The first part of this paper focuses on the coupling between the stochastic TBL and the deterministic vibro-acoustic models. Five techniques are presented. Numerical applications on an academic marine test case are proposed in order to discuss the calculation parameters and the interests/drawbacks of each technique. In the second part of the paper, the high frequency modelling with the Statistical Energy Analysis (SEA) method is considered. The focus is placed on the estimation of an important input of this method: the injected power by the TBL into the structure for each third octave band.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.M. Corcos, Resolution of pressure in Turbulence. J. Acoust. Soc. Am. 35(2), 192–199 (1963)

    Article  Google Scholar 

  2. D.M. Chase, The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112(1), 125–147 (1987)

    Article  Google Scholar 

  3. Y. Hwang, W. Bonness, S. Hambric, Comparison of semi-empirical models for tuburlent boundary layer wall pressure spectra. J. Sound Vib. 319(1), 199–217 (2009)

    Article  Google Scholar 

  4. Y. Rozenberg, G. Robert, S. Moreau, Wall-pressure spectral model including the adverse pressure gradient effects. AIAA J. 50(10), 2168–2179 (2012)

    Article  Google Scholar 

  5. W. Bonness, D. Capone, S. Hambric, Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow. J. Sound Vib. 329(20), 4166–4180 (2010)

    Article  Google Scholar 

  6. W.R. Graham, A comparison of models for the wavenumber-frequency spectrum of turbulent boundary layer pressures. J. Sound Vib. 206(4), 541–565 (1997)

    Article  Google Scholar 

  7. R.H. Lyon, R.G. Dejong, Theory and Application of Statistical Energy Analysis, 2nd edn. (Butterworth-Heinemann, Boston, 1995), p. 277

    Google Scholar 

  8. M. Goody, Empirical spectral model of surface pressure fluctuations. AIAA J. 42, 1788–1794 (2004)

    Article  Google Scholar 

  9. W.A. Strawderman, Wavevector-Frequency Analysis with Applications to Acoustics, Naval Underwater Systems Center, Technical Report, NUSC 8209 (1988)

    Google Scholar 

  10. C. Maury, P. Gardonio, S.J. Elliott, A wavenumber approach to modelling the response of a randomly excited panel, part I : general theory. J. Sound Vib. 252, 83–113 (2002)

    Article  Google Scholar 

  11. L. Maxit, V. Denis, Prediction of flow induced sound and vibration of periodically stiffened plates. J. Acoust. Soc. Am. 133(1), 146–160 (2013)

    Article  Google Scholar 

  12. I. Harari, M. Slavutin, E. Turkel, Analytical and numerical Studies of a finite element PML for the Helmholtz equation. J. Comput. Acoust. 8, 121–137 (2000)

    Article  MathSciNet  Google Scholar 

  13. P. Bettess, Infinite elements. Int. J. Num. Meth. Eng. 11, 53–64 (1977)

    Article  MATH  Google Scholar 

  14. D.W. Herrin, T.W. Wu, A.F. Seybert, Boundary Element Modelling, Handbook of noise and vibration control, Paper 8, ed. by M.J. Crocker (John Wiley and Sons, Inc., New York, 2007), pp. 116–127

    Google Scholar 

  15. M. Abid, M.S. Abbes, J.D. Chazot, L. Hammemi, L. Hammemi, M. Haddar, Acoustic response of a multilayer panel with viscoelastic material. Int. J. Acoust. Vib. 17, 82–89 (2012)

    Google Scholar 

  16. M. Ouisse, L. Maxit, C. Cacciolati, J.L. Guyader, Patch transfer functions as a tool to couple linear acoustic problems. J. Vib. Acoust. (ASME) 127, 458–466 (2005)

    Article  Google Scholar 

  17. M. Aucejo, L. Maxit, N. Totaro, J.L. Guyader, Convergence acceleration using residual shapes technique when solving structure-acoustic coupling with patch transfer functions method. Comput. Struct. 88, 728–736 (2010)

    Article  Google Scholar 

  18. L. Maxit, M. Aucejo, J.L. Guyader, Improving the patch transfer function approach for fluid-structure modelling in heavy fluid. J. Vib. Acoust. ASME 134, 1–14 (2012)

    Article  Google Scholar 

  19. A. Berry, A new formulation for the vibrations and sound radiation of fluid-loaded plates with elastic boundary conditions. J. Acoust. Soc. Am. 96(2), 889–901 (1994)

    Article  Google Scholar 

  20. ACTRAN 12.2 User’s Guide. Vol. 1: Installation, operations, theory and utilities. Chap. 20: Random excitation. Free Field Technologies SA, Belgium (2012)

    Google Scholar 

  21. L.E. Wittig, A.K. Sinha, Simulation of multicorrelated random processes using the FFT algorithm. J. Acoust. Soc. Am. 58, 630–634 (1975)

    Article  Google Scholar 

  22. F. Birgersson, N.S. Ferguson, S. Finnveden, Application of the spectral finite element method to turbulent boundary layer induced vibration of plates. J. Sound Vib. 259(4), 873–891 (2003)

    Article  Google Scholar 

  23. M. Aucejo, L. Maxit, J.-L. Guyader, Experimental simulation of turbulent boundary layer induced vibrations by using a synthetic array. J. Sound Vib. 331(16), 3824–3843 (2012)

    Article  Google Scholar 

  24. W.K. Blake, Mechanics of flow-induced sound and vibration. Vol. I: General concept and elementary sources. Vol. II: Complex flow-structure interaction. Orlando, Florida, Academic press, Inc. (1986)

    Google Scholar 

  25. A.O. Borisyuk, V.T. Grinchenko, Vibration and noise generation by elastic elements excited by a turbulent flow. J. Sound Vib. 204(2), 213–237 (1996)

    Article  Google Scholar 

  26. S. Hambric, Y. Hwang, W. Bonness, Vibrations of plates with clamped and free edges excited by low-speed turbulent boundary layer flow. J. Fluids Struct. 19, 93–110 (2004)

    Article  Google Scholar 

  27. F. Fahy, Some applications of the reciprocity principle in experimental vibroacoustics. Acoust. Phys. 49, 262–277 (2003)

    Article  Google Scholar 

  28. M. Berton, L. Maxit, D. Juvé, C. Audoly, Prediction of flow-induced sound and vibration: on different methods for introducing the TBL excitation in the vibroacoustic model, in Proceedings of Acoustics2013, New Delhi, India, November 2013

    Google Scholar 

  29. F. Fahy, Statistical energy analysis: a critical overview. Phil. Trans. R. Soc. Lond. A 34, 431–447 (1994)

    Article  Google Scholar 

  30. A. Le Bot, Derivation of statistical energy analysis from radiative exchanges. Journal of Sound and Vibration 300(3), 763–779 (2007)

    Article  Google Scholar 

  31. A. Le Bot, V. Cotoni, Validity diagrams of statistical energy analysis. J. Sound Vib. 329(2), 221–235 (2010)

    Article  Google Scholar 

  32. T. Lafont, N. Totaro, A. Le Bot, Review of statistical energy analysis hypotheses in vibroacoustics. Proc. R. Soc. A 470, 20130515 (2013)

    Article  Google Scholar 

  33. A. Culla, A. Sestieri, Is it possible to treat confidentially SEA the wolf in sheep’s clothing? Mech. Syst. Signal Process. 20, 1372–1399 (2006)

    Article  Google Scholar 

  34. L. Maxit, J.-L. Guyader, Estimation of SEA coupling loss factors using a dual formulation and FEM modal information. Part I: theory. J. Sound Vib. 239(5), 907–930 (2001)

    Article  Google Scholar 

  35. L. Maxit, Analysis of the modal energy distribution of an excited vibrating panel coupled with a heavy fluid cavity by a dual modal formulation. J. Sound Vib. 332(25), 6703–6724 (2013)

    Article  Google Scholar 

  36. C. Audoly, S. Beretti, Prediction of Turbulent Flow Noise Inside an Acoustic Sounder Cavity, in Proceedings of Euromech. Cargèse, France, April 1999

    Google Scholar 

  37. L. Maxit, C. Audoly, Hydrodynamic Noise Prediction Inside a Sonar Dome: Estimation of Injected Power from the Wavenumber—Frequency Spectrum of The Turbulent Wall Pressure, in Proceedings of NOVEM 2005, St Raphael, France, Apr 2005

    Google Scholar 

  38. N. Totaro, J.L. Guyader, Model of frequency averaged injected power into a plate excited by a turbulent boundary layer. Acta Acust. United Acust. 89, 647–657 (2003)

    Google Scholar 

  39. N. Totaro, G. Robert, J.L. Guyader, Frequency averaged injected power under boundary layer excitation: an experimental validation. Acta Acust. United Acust. 94, 534–547 (2008)

    Article  Google Scholar 

  40. M.L. Rumerman, Estimation of broadband acoustic power due to rib forces on a reinforced panel under turbulent boundary layer-like pressure excitation. I. Derivations using strong model. J. Acoust. Soc. Am. 109, 563–575 (2001)

    Article  Google Scholar 

  41. M.L. Rumerman, Estimation of broadband acoustic power due to rib forces on a reinforced panel under turbulent boundary layer-like pressure excitation. II. Applicability and validation. J. Acoust. Soc. Am. 109, 576–582 (2001)

    Article  Google Scholar 

  42. M.L. Rumerman, Estimation of broadband acoustic power radiated from a turbulent boundary layer-driven reinforced finite plate section due to rib and boundary forces. J. Acoust. Soc. Am. 111, 1274–1284 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Maxit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Maxit, L., Berton, M., Audoly, C., Juvé, D. (2015). Discussion About Different Methods for Introducing the Turbulent Boundary Layer Excitation in Vibroacoustic Models. In: Ciappi, E., De Rosa, S., Franco, F., Guyader, JL., Hambric, S. (eds) Flinovia - Flow Induced Noise and Vibration Issues and Aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-09713-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09713-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09712-1

  • Online ISBN: 978-3-319-09713-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics