Skip to main content

Characterization of Biomass Used for Fischer-Tropsch Diesel Synthesis

  • Conference paper
  • First Online:
Sustainable Energy in the Built Environment - Steps Towards nZEB

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

The characteristics of biomass used at Combined Heat and Power (CHP) plant Güssing (Austria) were determined over three samples taken from the wood chips, including proximate analysis: moisture, ash, cellulose and lignin content, and ultimate analysis: total organic carbon, concentration of H, S, N, and O, high and low heating value and FT-IR. Based on the characteristics of biomass, investigation of the syngas composition has been performed. The results showed that most of the proximate and ultimate analysis, as well as FT-IR analysis of wood chips were comparable with the standards and with other results found in literature. Extrinsic moisture higher than the standard value was obtained due to high humidity in the atmosphere during harvesting, causing difficulties of the feeding inside the fluidized bed gasifier and affecting the quality of the syngas. Low concentrations of S and N determined low emissions of NH3 and H2S, providing a synthesis gas suitable for Fischer-Tropsch synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stöcker, M. (2008). Biofuels and biomass-to-liquid fuels in the biorefinery catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie International Edition, 47, 9200–9211.

    Article  Google Scholar 

  2. Rapagnà, S., Gallucci, K., Di Marcello, M., Matt, M., Nacken, M., Heidenreich, S., et al. (2010). Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier. Bioresource Technology, 101, 7123–7130.

    Article  Google Scholar 

  3. Tock, L., Gassner, M., & Maréchal, F. (2010). Thermochemical production of liquid fuels from biomass: Thermo-economic modelling, process design and process integration analysis. Biomass and Bioenergy, 34, 1838–1854.

    Article  Google Scholar 

  4. Bremaud, M., Fongarland, P., Anfray, J., Jallais, S., Schweich, D., & Khodakov, A. Y. (2005). Influence of syngas composition on the transient behaviour of a Fischer-Tropsch continuous slurry reactor. Catalysis Today, 106, 137–142.

    Article  Google Scholar 

  5. Pfeifer, C., Puchner, B., & Hofbauer, H. (2009). Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2. Chemical Engineering Science, 64, 5073–5083.

    Article  Google Scholar 

  6. García, R., Pizarro, C., Lavin, A. G., & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103, 249–258.

    Article  Google Scholar 

  7. Fischer, G., Prieler, S., van Velthuizen, H., Lensink, S. M., Londo, M., & de Wit, M. (2010). Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures: Part I: Land productivity. Biomass and Bioenergy, 34, 159–172.

    Article  Google Scholar 

  8. Tijmensen, M. J. A., Faaij, A. P. C., Hamelinck, C. N., & van Hardeveld, M. R. M. (2002). Exploration of the possibilities for production of Fischer-Tropsch liquids and power via biomass gasification. Biomass and Bioenergy, 23, 129–152.

    Article  Google Scholar 

  9. Chum, H. L., & Overend, R. P. (2001). Biomass and renewable fuels. Fuel Processing Technology, 71, 187–195.

    Article  Google Scholar 

  10. Damartiz, T., & Zabaniotou, A. (2011). Thermochemical conversion of biomass to second generation biofuels through integrated process design—A review. Renewable and Sustainable Energy Reviews, 15, 366–378.

    Article  Google Scholar 

  11. Sauciuc, A., Dumitrescu, L., Manciulea, I., & Zaha, C. (2011). Studies on recycling of waste cooking oils for biodiesel production. Environmental Engineering and Management Journal, 10, 205–211.

    Google Scholar 

  12. Zwart, R. W. R., Boerrigter, H., & van der Drift, A. (2006). The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer-Tropsch products. Energy and Fuels, 20, 2192–2197.

    Article  Google Scholar 

  13. Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14, 578–597.

    Article  Google Scholar 

  14. Bao, B., El-Halwagi, M. M., & Elbashir, N. O. (2010). Simulation, integration, and economic analysis of gas-to-liquid processes. Fuel Process Technology, 91, 703–713.

    Article  Google Scholar 

  15. Cheng, J. (2010). Biomass to renewable energy processes. Boca Raton, USA: CRC Press Taylor & Francis Group Publishing.

    Google Scholar 

  16. Obernberger, I., & Thek, G. (2004). Physical characterization and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy, 27, 653–669.

    Article  Google Scholar 

  17. Samuelsson, R., Burvall, J., & Jirjis, R. (2006). Comparison of different methods for the determination of moisture content in biomass. Biomass and Bioenergy, 30, 929–934.

    Article  Google Scholar 

  18. Neves, D., Thunman, H., Matos, A., Tarelho, L., & Gómez-Barea, A. (2011). Characterization and prediction of biomass pyrolysis products. Progress in Energy and Combustion Science, 37, 611–630.

    Article  Google Scholar 

  19. Wankhade, P.P., Jajoo, B.N., Wankhade, R.P. (2009). Performance evaluation of parameters of biomass gasifier-diesel engine setup using woody biomass (Subabool). In IEEE International Conference Emerging Trends in Engineering and Technology, Nagpur, India (pp. 25–29).

    Google Scholar 

  20. Faaij, A., Van Ree, R., Waldheim, L., Olsson, E., Oudhuis, A., Van Wijk, A., et al. (1997). Gasification of biomass wastes and residues for electricity production. Biomass and Bioenergy, 12, 387–407.

    Article  Google Scholar 

  21. Strezov, V., Moghtaderi, B., & Lucas, J. A. (2004). Computational calorimetric investigation of the reactions during thermal conversion of wood biomass. Biomass and Bioenergy, 27, 459–465.

    Article  Google Scholar 

  22. Mohebby, B. (2005). Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. International Biodeterioration and Biodegradation, 55, 247–251.

    Article  Google Scholar 

  23. She, D., Xu, F., Geng, Z. C., Sun, R. C., Jones, G. L., & Baird, M. S. (2010). Physicochemical characterization of extracted lignin from sweet sorghum stem. Industrial Crops and Products, 32, 21–28.

    Article  Google Scholar 

  24. Popescu, C. M., Popescu, M. C., & Vasile, C. (2010). Characterization of fungal degraded lime wood by FT-IR and 2D IR correlation spectroscopy. Microchemical Journal, 95, 377–387.

    Article  Google Scholar 

  25. Zmora-Nahum, S., Hadar, Y., & Chen, Y. (2007). Physico-chemical properties of commercial composts varying in their source materials and country of origin. Soil Biology and Biochemistry, 39, 1263–1276.

    Article  Google Scholar 

  26. Huang, A., Zhou, Q., Liu, J., Fei, B., & Sun, S. (2008). Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. Journal of Molecular Structure, 883, 160–166.

    Article  Google Scholar 

  27. Göransson, K., Söderlind, U., & Zhang, W. (2011). Review of syngas production via biomass DFBGs. Renewable and Sustainable Energy Reviews, 15, 482–492.

    Article  Google Scholar 

  28. Tristantini, D., Lögdberg, S., Gevert, B., Borg, Ø., & Holmen, A. (2007). The effect of synthesis gas composition on the Fischer-Tropsch synthesis over Co/γ-Al2O3 and Co-Re/γ-Al2O3 catalysts. Fuel Processing Technology, 88, 643–649.

    Article  Google Scholar 

  29. Sauciuc, A., Potetz, A., Weber, G., Rauch, R., Hofbauer, H., Dumitrescu, L. (2011). Synthetic diesel from biomass by Fischer-Tropsch synthesis. In Proceedings of International Conference on Renewable Energies and Power Quality, Gran Canary, Spain (pp. 1–6).

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the CHP plant Güssing by offering the wood chips biomass samples, Bioenergy 2020+ Centre of Güssing and by the Sectoral Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number ID59321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca Sauciuc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sauciuc, A., Dumitrescu, L., Manciulea, I., Rauch, R., Hofbauer, H. (2014). Characterization of Biomass Used for Fischer-Tropsch Diesel Synthesis. In: Visa, I. (eds) Sustainable Energy in the Built Environment - Steps Towards nZEB. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-09707-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09707-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09706-0

  • Online ISBN: 978-3-319-09707-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics