Skip to main content

Recycling Biomass Waste to Compost

  • Conference paper
  • First Online:
Book cover Sustainable Energy in the Built Environment - Steps Towards nZEB

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

Composting is nowadays an important and efficient process in sustainable organic waste management. Recycling process of biodegradable organic waste (animal and agriculture residues, sewage sludge, household refuse) by composting, also represents an ecological solution to synthesize new materials used as biofertilizers or adsorbents in wastewater treatment. The paper presents results obtained in composting vegetables waste, sewage sludge, beech sawdust and beech ash, monitoring the parameters of the composting process and investigation of the nutritional quality of the compost by germination test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, A., Rafatullah, M., Sulaiman, O., Ibrahim, M. H., Chii, Y. Y., & Siddique, B. M. (2009). Removal of Cu(II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood, Desalination 247 (pp. 636–646). Amsterdam: Elsevier.

    Google Scholar 

  2. Ali, M. (2012). New generation adsorbents for water treatment. Chemical Reviews, 112, 5073–5091.

    Google Scholar 

  3. Alvarenga, P., Palma, P., Gonçalves, A. P., Fernandes, R. M., Cunha-Queda, A. C., Duarte, E., et al. (2007). Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land. Environment International, 33, 505–513.

    Article  Google Scholar 

  4. Amir, S., Benlboukht, F., Cancian, N., Winterton, W., & Hafidi, M. (2008) Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. Journal of Hazardous Materials 160, 448–455.

    Google Scholar 

  5. Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33, 2469–2479.

    Google Scholar 

  6. Barberis, R., & Nappi, P. (1996). Evaluation of compost stability. In M. de Bertoldi, P. Srequi, B. Lremmes, & T. Papi (Eds.), The science of composting, Part 1 (pp. 175–184). London: Chapman and Hall.

    Chapter  Google Scholar 

  7. Belyaeva, O. N., & Haynes, R. J. (2009). Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash. Bioresource Technology 100, 5203–5209.

    Google Scholar 

  8. Bhatnagar, A., & Sillanpaa, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment. A review, Chemical Engineering Journal, 157, 277–296.

    Google Scholar 

  9. Bijaya K., Barrington S., Martinez, J., & King S. (2008). Characterization of food waste and bulking agents for composting. Waste Management, 28, 795–804.

    Google Scholar 

  10. Boulter-Bitzer, J. I., Trevors, J. T., & Bolanda, G. J. (2006). A polyphasic approach for assessing maturity and stability in compost intended for suppression of plant pathogens. Applied Soil Ecology, 34, 65–81.

    Article  Google Scholar 

  11. Bustamante, M. A., Paredes, C., Marhuenda-Egea, F. C., Perez-Espinosa, A., Bernal, M. P., & Moral, R. (2008). Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere, 72, 551–557.

    Google Scholar 

  12. Castaldi, P., Alberti, G., Merella, R., & Melis, P. (2005). Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Management, 25, 209–213.

    Google Scholar 

  13. Cochrane, E. L., Lua, S., Gibb, S.W., & Villaescusa, I. (2006). A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. Journal of Hazardous Materials, 137, 198–206.

    Google Scholar 

  14. Dumitrescu, L. (2004). Elements of vegetable biochemistry (pp. 50–90). Transilvania University Ed., ISSN 158-0506; ISBN 973-635-292-7.

    Google Scholar 

  15. Dumitrescu, L., Manciulea, I., Isac, L. (2007). Recycling waste by composting. Bulletin of the Transilvania University of Brasov 4 (pp. 679–684) Brasov: Transilvania University Press.

    Google Scholar 

  16. Dumitrescu, L., Manciulea, I., Sauciuc, A., Zaha, C. (2009). Obtaining fertilizer compost by composting vegetable waste, sewage sludge and sawdust, Bulletin of the Transilvania University of Braşov 2 (pp. 117–122) Brasov, Romania: Transilvania University Press.

    Google Scholar 

  17. Eklind, Y., & Kirchmann, H. (2000). Composting and storage of organic household waste with different litter amendments. II: nitrogen turnover and losses. Bioresource Technology, 74, 125–133.

    Google Scholar 

  18. EU Commission. (2010). Biodegradable waste. http://ec.europa.eu/environment/waste/compost/index.htm.

  19. Fernández, J. M., Hernández, D., Plaza, C., & Polo, A. (2007). Organic matter in degraded agricultural soils amended with composted and thermally-dried sewage sludges. Science of the Total Environment, 378, 75–80.

    Google Scholar 

  20. Fytili, D., & Zabaniotou A. (2007). Utilization of sewage sludge in EU application of old and new methods—A review. Renewable and Sustainable Energy Reviews, 12, 116–140.

    Google Scholar 

  21. Gaind, S., & Gaur, A. C. (2003). Quality assessment of compost prepared from fly ash and crop residue. Bioresource Technology, 87, 125–127.

    Google Scholar 

  22. Godfree A. (2003). Health constraints on the agricultural recycling of wastewater sludge. In N. J. Horan (Ed.) Handbook of water and wastewater microbiology (pp. 281–296). New York: Academic Press.

    Google Scholar 

  23. Inbar, Y., Chen, Y., & Hadar, Y. (1991). Carbon-13 CPMAS NMR and FTIR spectroscopic analysis of organic matter transformations during composting of solid wastes from wineries. Soil Science, 152, 272–282.

    Article  Google Scholar 

  24. Kim H., Baek, K., Kim, B. K., Shin, H. J., & Yang, J. W. (2008). Removal characteristics of metal cations and their mixtures using micellar-enhanced ultrafiltration. Korean Journal of Chemical, 25, 253–258.

    Google Scholar 

  25. Laturnus, F., von Arnold, K., & Gron, C. (2007). Organic contaminants from sewage sludge applied to agricultural soils – false alarm regarding possible problems for food safety. Environmental Science and Pollution Research, 14, 53–60.

    Google Scholar 

  26. Lin, L. C., Li, J. K., Juang, R. S. (2008). Removal of Cu(II) and Ni(II) from aqueous solutions using batch and fixed-bed ion exchange processes. Desalination, 225, 249–259.

    Google Scholar 

  27. Lucaci, D., & Vișa, M. (2011). Adsorption of methyl orange from wastewater using sawdust and sawdust-fly ash substrates. Revista de Chimie, 62, 741–745.

    Google Scholar 

  28. Lucaci, D., Vișa, M., & Duță, A. (2011). Cooper removal on wood-Fly ash substrates—Thermodinamic study. Revue Roumaine de Chemie, 56 1067–1074.

    Google Scholar 

  29. Mondini, C., Sánchez-Monedero, M. A., Sinicco, T., & Leita, L. (2006). Evaluation of extracted organic carbon and microbial biomass as stability parameters in ligno-cellulosic waste composts. Journal of Environmental Quality, 35, 2313–2320.

    Article  Google Scholar 

  30. Moral, R., Paredes, C., Bustamante, M. A., Marhuenda-Egea, F., Bernal, M. P. (2009). Utilization of manure composts by high-value crops: safety and environmental challenges. Bioresource Technology, 100, 5454–5460.

    Google Scholar 

  31. Mote, C. R., & Griffis, C. L., Variations in the composting process for different organic carbon sources. Agricultural Wastes, 2, 215–223.

    Google Scholar 

  32. OECD. (2002). Household energy & water consumption and waste generation: Trends (pp. 62–67). Environmental Impacts and Policy Responses, ENV/EPOC/WPNEP(2001)25, Paris: Organisation for Economic Co-operation and Development.

    Google Scholar 

  33. Oleszczuk, P. (2008). The toxicity of composts from sewage sludges evaluated by the direct contact tests phytotoxkit and ostracodtoxkit. Waste Management, 28, 1645–1653.

    Google Scholar 

  34. Pagnanelli, S., Mainelli, L., Bornoroni, D., & Dionisi, L. (2009). Mechanisms of heavy metal removal by activated sludge. Chemosphere, 75, 1028–1034.

    Google Scholar 

  35. Papadopoulos, A. E., Stylianou, M. A., Michalopoulos, C. P., Moustakas, K. G., Hapeshis, K. M., Vogiatzidaki, E. E. I., et al. (2009). Performance of a new household composter during in-home testing. Waste Management, 29, 204–213.

    Article  Google Scholar 

  36. Pino, G. H., de Mesquita, L. M. S., & Torem, M. L. (2006). Biosorption of heavy metals by powder of green coconut shell. Separation Science and Technology, 41, 3141–3153.

    Google Scholar 

  37. Rafatullah, M., Sulaimana, O., Hashima, R., & Ahmad, A. (2009). Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. Journal of Hazardous Materials, 170, 969–977.

    Article  Google Scholar 

  38. Rezaeia, R., Mirghaffaria, N., & Rezaeib, B. (2012). Kinetic isotherms study of copper adsorption from solutions by a low-cost adsorbent. International Journal of Chemical and Environmental Engineering, 3, 225–229.

    Google Scholar 

  39. Rynk, R. et al. (1992). On farm composting handbook (pp. 255–7654). Northeast Regional Agricultural Engineering Service. Available from NRAES, Cooperative Extension, 152 Riley-Robb Hall, Ithaca, NY 14853-5701, (607).

    Google Scholar 

  40. Rosenfeld, P., & Henry, C. (2001). Activated carbon and wood ash sorption of wastewater, compost and biosolids, odorants. Water Environment Research, 73, 388–393.

    Google Scholar 

  41. Sciban, M., Klasnja, M., & Skrbic, B. (2008). Adsorption of copper ions from water by modified agricultural by-products. Desalination, 229, 170–180.

    Google Scholar 

  42. Shukla, A., Zhang, Y. H., Dubey, P., Margrave, J. L., & Shukla, S. S. (2002). The role of sawdust in the removal of unwanted materials from water. Journal of Hazardous Materials, 95, 137–152.

    Google Scholar 

  43. Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds. New Jersey: Wiley.

    Google Scholar 

  44. Simantiraki, F., Kollias, C. G., Maratos, D., Hahladakis, J., Gidarakos, E. (2013). Qualitative determination and application of sewage sludge and municipal solid waste compost for BTEX removal from groundwater. Journal of Environmental Chemical Engineering, 1, 9–17.

    Google Scholar 

  45. Sisca, O. L., Novie, F., Soetaredjo, F. E., Sunarsob, J., & Ismadji, S., Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal, 44, 19–41.

    Google Scholar 

  46. Smidt, E., & Meissl, K., The applicability of Fourier transform-infrared (FT-IR) spectroscopy in waste management. Waste Management, 27, 268–276.

    Google Scholar 

  47. Smith, K. M., Fowler, G. D., Pullket, S., & Graham, N. J. D. (2009) Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Research, 43, 2569–2594.

    Google Scholar 

  48. Sundberg, C., J., & önsson, H. (2008). Higher pH and faster decomposition in biowaste composting by increased aeration. Waste Management, 28, 518–526.

    Google Scholar 

  49. Ulmanu, M., Maranon, E., Fernandez, Y., Castrillon, L., Anger, I., & Dumitriu, D. (2003). Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material sorbents. Water, Air, and Soil Pollution, 142, 357–373.

    Google Scholar 

  50. vanHerwijnen, R., Hutchings, T. R., Al-Tabbaa, A., Moffat, A. J., Johns, M. L., Ouki, S. K. (2007). Remediation of metal contaminated soil with mineral-amended composts. Environmental Pollution, 150, 347–354.

    Google Scholar 

  51. Vișa, M., & Duță, A. (2013). Methyl-orange and cadmium simultaneous removal using fly ash and photo-Fenton systems. Journal of Hazardous Materials, 244–245, 773–779.

    Google Scholar 

  52. Vișa, M., Isac I., & Duță, A. (2012). Fly ash adsorbents for multi-cation wastewater treatment. Applied Surface Science, 258, 6345–6352.

    Google Scholar 

  53. Vargas, C., Brandão, P. F. B., Ágreda, J., & Castillo, E. (2012). Cr(VI) removal by compost. Bio Resources, 7(3), 2711–2727.

    Google Scholar 

  54. Wei, Y. L., Lee, Y. C., Yang, Y. W., & Lee, J. F. (2004). Molecular study of concentrated copper pollutant with a compost. Chemosphere, 57, 1201–1205.

    Google Scholar 

  55. Zaha, C., Manciulea, I., & Sauciuc, A. (2011). Reducing the volume of waste by composting vegetable waste, sewage sludge and sawdust. Environmental Engineering and Management Journal, 10, 1415–1423.

    Google Scholar 

  56. Zaha, C., Sauciuc, A., Dumitrescu, L., & Manciulea, I. (2011). Aspects regarding recycling sludge by composting. Environmental Engineering and Management Journal, 10, 1589–1594.

    Google Scholar 

  57. Zaha, C., Dumitrescu, L., & Manciulea I. (2013). Correlations between composting conditions and characteristics of compost as biofertilizer. Bulletin of the Transilvania University of Brasov, 6, 51–58.

    Google Scholar 

  58. Zaha, C., Sauciuc, A., Manciulea, I., & Dumitrescu, L. (2011). Sustainable development by recycling waste as biofertilizer compost. In Proceedings of 1st International Conference on Quality and Innovation in Engineering and Management (pp. 535–538), Cluj-Napoca, Romania.

    Google Scholar 

  59. Zaharia, M., Robu T., & Irimia, N. (2010). Ecological agriculture: dynamics of the biological activities in soils cultivated with maize under the influence of organic fertilization. Environmental Engineering and Management Journal, 9, 1437–1441.

    Google Scholar 

  60. Zaha, C. (2013). Ecological biomaterials used as bio fertilizers and as heavy metals removers from wastewater. PhD Thesis, Transilvania University of Brasov.

    Google Scholar 

Download references

Acknowledgments

This paper is supported by the Sectoral Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the project number POSDRU/159/1.5/S/134378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Dumitrescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dumitrescu, L., Manciulea, I., Zaha, C., Sauciuc, A. (2014). Recycling Biomass Waste to Compost. In: Visa, I. (eds) Sustainable Energy in the Built Environment - Steps Towards nZEB. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-09707-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09707-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09706-0

  • Online ISBN: 978-3-319-09707-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics