Skip to main content

Positive and Negative Proofs for Circuits and Branching Programs

  • Conference paper
  • 492 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8614))

Abstract

We extend the # operator in a natural way and derive a new type of counting complexity. While #\(\mathcal C\) classes (where \(\mathcal C\) is some circuit-based class like NC 1) only count proofs for acceptance of some input in circuits, one can also count proofs for rejection. The here proposed Zap-\(\mathcal C\) complexity classes implement this idea. We show that Zap-\(\mathcal C\) lies between #\(\mathcal C\) and Gap-\(\mathcal C\). In particular we consider Zap-NC 1 and polynomial size branching programs of bounded and unbounded width. We find connections to planar branching programs since the duality of positive and negative proofs can be found again in the duality of graphs and their co-graphs. This links to possible applications of our contribution, like closure properties of complexity classes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajek, J. (ed.) In Complexity of Computations and Proofs. Quaderni di Matematica (2004)

    Google Scholar 

  2. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beigel, R.: The polynomial method in circuit complexity. In: Structure in Complexity Theory Conference, pp. 82–95. IEEE Computer Society (1993)

    Google Scholar 

  4. Barrington, D.A.M., Lu, C.-J., Miltersen, P.B., Skyum, S.: Searching constant width mazes captures the AC0 hierarchy. In: Meinel, C., Morvan, M., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 73–83. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. J. Comput. Syst. Sci. 57(2), 200–212 (1998)

    Article  MATH  Google Scholar 

  6. Dorzweiler, O.: Zap-Klassen für Schaltkreise und Branching Programs. Masterarbeit, Universität Tübingen (2013)

    Google Scholar 

  7. Fenner, S.A., Fortnow, L., Kurtz, S.A.: Gap-definable counting classes. J. Comput. Syst. Sci. 48(1), 116–148 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Flamm, T.: Zap-C Schaltkreise. Diplomarbeit, Universität Tübingen (2012)

    Google Scholar 

  9. Hansen, K.A.: Constant width planar branching programs characterize ACC0 in quasipolynomial size. In: IEEE Conference on Computational Complexity, pp. 92–99. IEEE Computer Society (2008)

    Google Scholar 

  10. Jung, H.: Depth efficient transformations of arithmetic into boolean circuits. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 167–174. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  11. Lange, K.-J.: Unambiguity of circuits. Theor. Comput. Sci. 107(1), 77–94 (1993)

    Article  MATH  Google Scholar 

  12. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)

    Google Scholar 

  13. Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. In: FOCS, pp. 244–253. IEEE Computer Society (1997)

    Google Scholar 

  14. Razborov, A.A.: Lower bounds for deterministic and nondeterministic branching programs. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 47–60. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  15. Venkateswaran, H.: Circuit definitions of nondeterministic complexity classes. SIAM J. Comput. 21(4), 655–670 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Vollmer, H.: Introduction to circuit complexity - a uniform approach. Texts in theoretical computer science. Springer (1999)

    Google Scholar 

  17. Venkateswaran, H., Tompa, M.: A new pebble game that characterizes parallel complexity classes. SIAM J. Comput. 18(3), 533–549 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dorzweiler, O., Flamm, T., Krebs, A., Ludwig, M. (2014). Positive and Negative Proofs for Circuits and Branching Programs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2014. Lecture Notes in Computer Science, vol 8614. Springer, Cham. https://doi.org/10.1007/978-3-319-09704-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09704-6_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09703-9

  • Online ISBN: 978-3-319-09704-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics