Skip to main content

Classical Automata on Promise Problems

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8614))

Included in the following conference series:

Abstract

In automata theory, promise problems have been mainly examined for quantum automata. In this paper, we focus on classical automata and obtain some new results regarding the succinctness of models and their computational powers. We start with a negative result. Recently, Ambainis and Yakaryılmaz (2012) introduced a quantumly very cheap family of unary promise problems, i.e. solvable exactly by using only a single qubit. We show that two-way nondeterminism does not have any advantage over realtime determinism for this family of promise problems. Secondly, we present some basic facts for classical models: The computational powers of deterministic, nondeterministic, alternating, and Las Vegas probabilistic automata are the same. Then, we show that any gap of succinctness between any two of deterministic, nondeterministic, and alternating automata models for language recognition cannot be violated on promise problems. On the other hand, we show that the tight quadratic gap between Las Vegas realtime probabilistic automata and realtime deterministic automata given for language recognition can be replaced with a tight exponential gap on promise problems. Lastly, we show how the situation can be different when considering two-sided bounded-error. Similar to quantum case, we present a probabilistically very cheap family of unary promise problems, i.e. solvable by a 2-state automaton with bounded-error. Then, we show that this family is not cheap for any of the aforementioned classical models. Moreover, we show that bounded-error probabilistic automata are more powerful than any other classical model on promise problems.

ArXiv version is at http://arxiv.org/abs/1405.6671.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. In: DCFS 2014. LNCS, vol. 8614, pp. 53–64. Springer, Heidelberg (2014)

    Google Scholar 

  2. Ambainis, A., Watrous, J.: Two–way finite automata with quantum and classical states. Theoretical Computer Science 287(1), 299–311 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise problems. Information Processing Letters 112(7), 289–291 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs (extended abstract). In: FOCS 1989: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pp. 462–467 (1989)

    Google Scholar 

  5. Duris, P., Hromkovic, J., Rolim, J.D.P., Schnitger, G.: Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 117–128. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Dwork, C., Stockmeyer, L.: Finite state verifiers I: The power of interaction. Journal of the ACM 39(4), 800–828 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dwork, C., Stockmeyer, L.J.: A time complexity gap for two-way probabilistic finite-state automata. SIAM Journal on Computing 19(6), 1011–1123 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freivalds, R.: Probabilistic two-way machines. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981)

    Google Scholar 

  9. Goldreich, O.: On promise problems: A survey. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Shimon Even Festschrift. LNCS, vol. 3895, pp. 254–290. Springer, Heidelberg (2006)

    Google Scholar 

  10. Gruska, J., Qiu, D., Zheng, S.: Generalizations of the distributed Deutsch-Jozsa promise problem. Technical report, arXiv:1402.7254 (2014)

    Google Scholar 

  11. Gruska, J., Qiu, D., Zheng, S.: Potential of quantum finite automata with exact acceptance. Technical Report arXiv:1404.1689 (2014)

    Google Scholar 

  12. Hromkovic, J., Schnitger, G.: On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Information and Computation 169(2), 284–296 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kapoutsis, C.A., Královic, R., Mömke, T.: Size complexity of rotating and sweeping automata. Journal of Computer and System Sciences 78(2), 537–558 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kuklin, Y.I.: Two-way probabilistic automata. Avtomatika i Vyc̆Istitelnaja Tekhnika 5, 36–36 (1973) (Russian)

    Google Scholar 

  15. Murakami, Y., Nakanishi, M., Yamashita, S., Watanabe, K.: Quantum versus classical pushdown automata in exact computation. IPSJ Digital Courier 1, 426–435 (2005)

    Article  Google Scholar 

  16. Nakanishi, M.: Quantum pushdown automata with a garbage tape. Technical Report arXiv:1402.3449 (2014)

    Google Scholar 

  17. Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–243 (1963)

    Article  MATH  Google Scholar 

  18. Rashid, J., Yakaryılmaz, A.: Implications of quantum automata for contextuality. In: CIAA. LNCS. Springer (to appear, 2014); arXiv:1404.2761

    Google Scholar 

  19. Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer and System Sciences 21(2), 195–202 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  20. Watrous, J.: Quantum computational complexity. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7174–7201. Springer (2009)

    Google Scholar 

  21. Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum finite automata. Discrete Mathematics and Theoretical Computer Science 12(2), 19–40 (2010)

    MATH  MathSciNet  Google Scholar 

  22. Zheng, S., Gruska, J., Qiu, D.: On the state complexity of semi-quantum finite automata. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 601–612. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. Zheng, S., Qiu, D., Gruska, J., Li, L., Mateus, P.: State succinctness of two-way finite automata with quantum and classical states. Theor. Comput. Sci. 499, 98–112 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zheng, S., Qiu, D., Li, L., Gruska, J.: One-way finite automata with quantum and classical states. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Dassow Festschrift 2012. LNCS, vol. 7300, pp. 273–290. Springer, Heidelberg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Geffert, V., Yakaryılmaz, A. (2014). Classical Automata on Promise Problems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2014. Lecture Notes in Computer Science, vol 8614. Springer, Cham. https://doi.org/10.1007/978-3-319-09704-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09704-6_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09703-9

  • Online ISBN: 978-3-319-09704-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics