Advertisement

A Variational Approach to the Evolutionary Financial Equilibrium Problem with Memory Terms and Adaptive Constraints

  • Annamaria Barbagallo
  • Patrizia Daniele
  • Mariagrazia Lorino
  • Antonino MaugeriEmail author
  • Cristina Mirabella
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 100)

Abstract

We consider an evolutionary financial equilibrium problem where the risk assessment depends on previous equilibria and adaptive equality constraints are considered. A quasi-variational formulation is provided and an existence theorem is proved.

Keywords

Variational Inequality Equilibrium Problem Ceiling Price Floor Price Variational Inequality Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barbagallo, A.: On the regularity of retarded equilibria in time-dependent traffic equilibrium problems. Nonlinear Anal. 71, e2406–e2417 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barbagallo, A., Di Vincenzo. R.: Lipschitz continuity and duality for dynamic oligopolistic market equilibrium problem with memory term. J. Math. Anal. Appl. 382, 231–247 (2011)Google Scholar
  3. 3.
    Barbagallo, A., Pia, S.: Weighted variational inequalities in non-pivot Hilbert spaces with applications. Comput. Optim. Appl. 48, 487–514 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Barbagallo, A., Daniele, P., Maugeri, A.: Variational formulation for a general dynamic financial equilibrium problem. Balance law liability formula. Nonlinear Anal. 75, 1104–1123 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barbagallo, A., Daniele, P., Lorino, M., Maugeri, A., Mirabella, C.: Further results for general financial equilibrium problems via variational inequalities. J. Math. Financ. 3, 33–52 (2013)CrossRefGoogle Scholar
  6. 6.
    Barbagallo, A., Daniele, P., Giuffrè, S., Maugeri, A.: A variational approach for a general financial equilibrium problem: the Deficit formula, the balance law and the liability formula. a path to the economy recover. Eur. J. Oper. Res. 237(1), 231–244 (2014)Google Scholar
  7. 7.
    Daniele, P.: Variational inequalities for evolutionary financial equilibrium. In: Nagurney, A. (ed.) Innovations in Financial and Economic Networks, pp. 84–108. Edward Elgar, Cheltenham (2003)Google Scholar
  8. 8.
    Daniele, P.: Time-dependent spatial price equilibrium problem: existence and stability results for the quantity formulation model. J. Global Optim. 28, 283–295 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Daniele, P.: Variational inequalities for general evolutionary financial equilibrium. In: Giannessi, F., Maugeri, A. (eds.) Variational Analysis and Applications, pp. 279–299. Springer, New York (2005)CrossRefGoogle Scholar
  10. 10.
    Daniele, P.: Evolutionary variational inequalities applied to financial equilibrium problems in an environment of risk and uncertainty. Nonlinear Anal. 63, 1645–1653 (2005)CrossRefGoogle Scholar
  11. 11.
    Daniele, P.: Dynamic Networks and Evolutionary Variational Inequalities. Edward Elgar Publishing, Chentelham (2006)zbMATHGoogle Scholar
  12. 12.
    Daniele, P., Giuffrè, S., Pia, S.: Competitive financial equilibrium problems with policy interventions. J. Ind. Manag. Optim. 1, 39–52 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Donato, M.B., Milasi, M.: Lagrangean variables in infinite dimensional spaces for a dynamic economic equilibrium problem. Nonlinear Anal. 74, 5048–5056 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Donato, M.B., Milasi, M., Scrimali, L.: Walrasian equilibrium problem with memory term. J. Optim. Theory Appl. 151, 64–80 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Giuffrè, S., Pia, S.: Weighted traffic equilibrium problem in non pivot hilbert spaces with long term memory. AIP Conf. Proc. 1281, 282–285 (2010)CrossRefGoogle Scholar
  16. 16.
    Giuffré, S., Idone, G., Maugeri, A: Duality theory and optimality conditions for generalized complementary problems. Nonlinear Anal. 63, e1655–e1664 (2005)zbMATHGoogle Scholar
  17. 17.
    Giuffrè, S., Idone, G., Pia, S.: Some classes of projected dynamical systems in banach spaces and variational inequalities. J. Global Optim. 40, 119–128 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Khan, A.A., Raciti, F.: A multiplier rule in set-valued optimization. Bull. Austral. Math. Soc. 68, 93–100 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Nagurney, A., Parkes, D., Daniele, P.: The Internet, evolutionary variational inequalities, and the time-dependent braess paradox. Comput. Manag. Sci. 4, 243–281 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Raciti, F.: Equilibrium conditions and vector variational inequalities: a complex relation. J. Global Optim. 40, 353–360 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Annamaria Barbagallo
    • 1
  • Patrizia Daniele
    • 2
  • Mariagrazia Lorino
    • 2
  • Antonino Maugeri
    • 2
    Email author
  • Cristina Mirabella
    • 2
  1. 1.Department of Mathematics and Applications “R. Caccioppoli”University of Naples “Federico II”NaplesItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly

Personalised recommendations