Skip to main content

Adenocarcinoma of the Prostate

  • Chapter
  • First Online:
Book cover MRI of the Female and Male Pelvis

Abstract

Prostate cancer is the most common cancer and the second most common cause of cancer-related death among men. Because of the advent of prostate-specific antigen (PSA) concentration in serum screening, most prostate cancer new cases are clinically localized at diagnosis, and the 5-year relative survival rate approaches 100 %. Until now, patients with an elevated PSA level or with abnormal findings at digital rectal examination were candidates for further diagnostic evaluation with a transrectal ultrasonography (US)-guided prostate random biopsy for determining the cancer grade; however, random biopsy has some limits, for example, undersampling (35 % cancers missed on first biopsy) or underestimation of the grading. Instead, magnetic resonance (MR) imaging has been shown to be of particular help not only in the detection and localization of prostate cancer but also in staging; accurate assessment is a prerequisite for optimal clinical management and therapy selection. Traditional prostate MR imaging has been based on morphologic imaging with standard T1-weighted and T2-weighted sequences, which has limited accuracy in the detection of prostate cancer: recently, the accuracy is significantly improved by the combined use of standard T2-weighted MR imaging and advanced MR imaging techniques such as diffusion-weighted imaging, dynamic contrast-enhanced imaging, and MR spectroscopy. Multiparametric MR imaging provides the highest accuracy in the diagnosis and staging of prostate cancer. In addition, improvements in MR imaging hardware and software (3-T vs 1.5-T imaging) continue to improve spatial and temporal resolution and the signal-to-noise ratio of MR imaging examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkin DM et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    PubMed  Google Scholar 

  2. American Cancer Society (2009) Prostate cancer fact. Cancer fact and figures. American Cancer Society, Atlanta, pp 19–20

    Google Scholar 

  3. Mazhar D, Waxman J (2002) Prostate cancer. Postgrad Med J 78(924):590–595

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Pound CR et al (1999) Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281(17):1591–1597

    CAS  PubMed  Google Scholar 

  5. Johansson JE et al (1997) Fifteen-year survival in prostate cancer. A prospective, population-based study in Sweden. JAMA 277(6):467–471

    CAS  PubMed  Google Scholar 

  6. Byar DP, Mostofi FK (1972) Carcinoma of the prostate: prognostic evaluation of certain pathologic features in 208 radical prostatectomies. Examined by the step-section technique. Cancer 30(1):5–13

    CAS  PubMed  Google Scholar 

  7. Gleason DF (1992) Histologic grading of prostate cancer: a perspective. Hum Pathol 23(3):273–279

    CAS  PubMed  Google Scholar 

  8. Egevad L et al (2002) Prognostic value of the Gleason score in prostate cancer. BJU Int 89(6):538–542

    CAS  PubMed  Google Scholar 

  9. Partin AW et al (2001) Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 58(6):843–848

    CAS  PubMed  Google Scholar 

  10. Albertsen PC (2010) The unintended burden of increased prostate cancer detection associated with prostate cancer screening and diagnosis. Urology 75(2):399–405

    PubMed  Google Scholar 

  11. Schroder FH et al (1998) Evaluation of the digital rectal examination as a screening test for prostate cancer. Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst 90(23):1817–1823

    CAS  PubMed  Google Scholar 

  12. Catalona WJ et al (1994) Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 151(5):1283–1290

    CAS  PubMed  Google Scholar 

  13. Schroder FH et al (2008) Early detection of prostate cancer in 2007. Part 1: PSA and PSA kinetics. Eur Urol 53(3):468–477

    PubMed  Google Scholar 

  14. Donovan J et al (2003) Prostate Testing for Cancer and Treatment (ProtecT) feasibility study. Health Technol Assess 7(14):1–88

    CAS  PubMed  Google Scholar 

  15. Djavan B et al (2001) Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop? J Urol 166(5):1679–1683

    CAS  PubMed  Google Scholar 

  16. Noguchi M et al (2001) Relationship between systematic biopsies and histological features of 222 radical prostatectomy specimens: lack of prediction of tumor significance for men with nonpalpable prostate cancer. J Urol 166(1):104–109; discussion 109–110

    CAS  PubMed  Google Scholar 

  17. Cookson MS et al (1997) Correlation between Gleason score of needle biopsy and radical prostatectomy specimen: accuracy and clinical implications. J Urol 157(2):559–562

    CAS  PubMed  Google Scholar 

  18. Hoeks CM et al (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261(1):46–66

    PubMed  Google Scholar 

  19. Yacoub JH et al (2012) Imaging-guided prostate biopsy: conventional and emerging techniques. Radiographics 32(3):819–837

    PubMed  Google Scholar 

  20. Coakley FV, Qayyum A, Kurhanewicz J (2003) Magnetic resonance imaging and spectroscopic imaging of prostate cancer. J Urol 170(6 Pt 2):S69–S75; discussion S75–S76

    PubMed  Google Scholar 

  21. Steyn JH, Smith FW (1982) Nuclear magnetic resonance imaging of the prostate. Br J Urol 54(6):726–728

    CAS  PubMed  Google Scholar 

  22. Hricak H et al (1983) Anatomy and pathology of the male pelvis by magnetic resonance imaging. AJR Am J Roentgenol 141(6):1101–1110

    CAS  PubMed  Google Scholar 

  23. Gleason DF (1966) Classification of prostatic carcinomas. Cancer Chemother Rep 50(3):125–128

    CAS  PubMed  Google Scholar 

  24. Mellinger GT, Gleason D, Bailar J 3rd (1967) The histology and prognosis of prostatic cancer. J Urol 97(2):331–337

    CAS  PubMed  Google Scholar 

  25. Gleason DF, Mellinger GT (1974) Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111(1):58–64

    CAS  PubMed  Google Scholar 

  26. Aihara M et al (1994) Heterogeneity of prostate cancer in radical prostatectomy specimens. Urology 43(1):60–66; discussion 66–67

    CAS  PubMed  Google Scholar 

  27. McGowan DG, Bain GO, Hanson J (1983) Evaluation of histological grading (Gleason) in carcinoma of the prostate: adverse influence of highest grade. Prostate 4(2):111–118

    CAS  PubMed  Google Scholar 

  28. Ruijter ET et al (1996) Histological grade heterogeneity in multifocal prostate cancer. Biological and clinical implications. J Pathol 180(3):295–299

    CAS  PubMed  Google Scholar 

  29. Humphrey PA (2003) Grading of prostatic carcinoma. In: Prostate pathology. ASCP Press, Chicago, pp 338–374

    Google Scholar 

  30. Allsbrook WC Jr et al (2001) Interobserver reproducibility of Gleason grading of prostatic carcinoma: general pathologist. Hum Pathol 32(1):81–88

    PubMed  Google Scholar 

  31. Partin AW et al (1997) Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 277(18):1445–1451

    CAS  PubMed  Google Scholar 

  32. Koppie TM et al (2000) Patterns of treatment of patients with prostate cancer initially managed with surveillance: results from The CaPSURE database. Cancer of the Prostate Strategic Urological Research Endeavor. J Urol 164(1):81–88

    CAS  PubMed  Google Scholar 

  33. McNeal JE (1981) The zonal anatomy of the prostate. Prostate 2(1):35–49

    CAS  PubMed  Google Scholar 

  34. Hricak H et al (1987) MR imaging of the prostate gland: normal anatomy. AJR Am J Roentgenol 148(1):51–58

    CAS  PubMed  Google Scholar 

  35. Villers A, Steg A, Boccon-Gibod L (1991) Anatomy of the prostate: review of the different models. Eur Urol 20(4):261–268

    CAS  PubMed  Google Scholar 

  36. Coakley FV, Hricak H (2000) Radiologic anatomy of the prostate gland: a clinical approach. Radiol Clin North Am 38(1):15–30

    CAS  PubMed  Google Scholar 

  37. Hambrock T et al (2008) Thirty-two-channel coil 3T magnetic resonance-guided biopsies of prostate tumor suspicious regions identified on multimodality 3T magnetic resonance imaging: technique and feasibility. Invest Radiol 43(10):686–694

    PubMed  Google Scholar 

  38. Takashima R et al (2002) Anterior distribution of Stage T1c nonpalpable tumors in radical prostatectomy specimens. Urology 59(5):692–697

    PubMed  Google Scholar 

  39. Franiel T et al (2011) Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding–multiparametric MR imaging for detection and biopsy planning. Radiology 259(1):162–172

    PubMed  Google Scholar 

  40. Mirilas P, Skandalakis JE (2004) Urogenital diaphragm: an erroneous concept casting its shadow over the sphincter urethrae and deep perineal space. J Am Coll Surg 198(2):279–290

    PubMed  Google Scholar 

  41. Kundra V et al (2007) Imaging in oncology from the University of Texas M. D. Anderson Cancer Center: diagnosis, staging, and surveillance of prostate cancer. AJR Am J Roentgenol 189(4):830–844

    PubMed  Google Scholar 

  42. Hricak H et al (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243(1):28–53

    PubMed  Google Scholar 

  43. Hricak H et al (1994) Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal–pelvic phased-array coils. Radiology 193(3):703–709

    CAS  PubMed  Google Scholar 

  44. Scheidler J et al (1999) Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging–clinicopathologic study. Radiology 213(2):473–480

    CAS  PubMed  Google Scholar 

  45. Haider MA et al (2007) Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 189(2):323–328

    PubMed  Google Scholar 

  46. Turkbey B et al (2010) Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology 255(1):89–99

    PubMed Central  PubMed  Google Scholar 

  47. Delongchamps NB et al (2011) Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int 107(9):1411–1418

    PubMed  Google Scholar 

  48. Chen M et al (2008) Prostate cancer detection: comparison of T2-weighted imaging, diffusion-weighted imaging, proton magnetic resonance spectroscopic imaging, and the three techniques combined. Acta Radiol 49(5):602–610

    CAS  PubMed  Google Scholar 

  49. Futterer JJ et al (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241(2):449–458

    PubMed  Google Scholar 

  50. Tanimoto A et al (2007) Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J Magn Reson Imaging 25(1):146–152

    PubMed  Google Scholar 

  51. Moseley ME et al (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol 11(3):423–429

    CAS  PubMed  Google Scholar 

  52. Hosseinzadeh K, Schwarz SD (2004) Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J Magn Reson Imaging 20(4):654–661

    PubMed  Google Scholar 

  53. Sato C et al (2005) Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. J Magn Reson Imaging 21(3):258–262

    PubMed  Google Scholar 

  54. Kim CK et al (2007) Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest Radiol 42(12):842–847

    PubMed  Google Scholar 

  55. Lim HK et al (2009) Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection–a multireader study. Radiology 250(1):145–151

    PubMed  Google Scholar 

  56. Vargas HA et al (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259(3):775–784

    PubMed Central  PubMed  Google Scholar 

  57. Desouza NM et al (2007) Magnetic resonance imaging in prostate cancer: the value of apparent diffusion coefficients for identifying malignant nodules. Br J Radiol 80(950):90–95

    CAS  PubMed  Google Scholar 

  58. Kim JH et al (2008) Apparent diffusion coefficient: prostate cancer versus noncancerous tissue according to anatomical region. J Magn Reson Imaging 28(5):1173–1179

    PubMed  Google Scholar 

  59. Noworolski SM et al (2008) Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn Reson Imaging 26(8):1071–1080

    PubMed Central  PubMed  Google Scholar 

  60. Tamada T et al (2008) Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging 28(3):720–726

    PubMed  Google Scholar 

  61. Rosenkrantz AB et al (2010) Prostate cancer vs. post-biopsy hemorrhage: diagnosis with T2- and diffusion-weighted imaging. J Magn Reson Imaging 31(6):1387–1394

    PubMed  Google Scholar 

  62. Jackson MW, Bentel JM, Tilley WD (1997) Vascular endothelial growth factor (VEGF) expression in prostate cancer and benign prostatic hyperplasia. J Urol 157(6):2323–2328

    CAS  PubMed  Google Scholar 

  63. Padhani AR, Harvey CJ, Cosgrove DO (2005) Angiogenesis imaging in the management of prostate cancer. Nat Clin Pract Urol 2(12):596–607

    PubMed  Google Scholar 

  64. Engelbrecht MR et al (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229(1):248–254

    PubMed  Google Scholar 

  65. Alonzi R, Padhani AR, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63(3):335–350

    PubMed  Google Scholar 

  66. Sciarra A et al (2010) Magnetic resonance spectroscopic imaging (1H-MRSI) and dynamic contrast-enhanced magnetic resonance (DCE-MRI): pattern changes from inflammation to prostate cancer. Cancer Invest 28(4):424–432

    CAS  PubMed  Google Scholar 

  67. Ogura K et al (2001) Dynamic endorectal magnetic resonance imaging for local staging and detection of neurovascular bundle involvement of prostate cancer: correlation with histopathologic results. Urology 57(4):721–726

    CAS  PubMed  Google Scholar 

  68. Jager GJ et al (1997) Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology 203(3):645–652

    CAS  PubMed  Google Scholar 

  69. Kim CK, Park BK, Kim B (2006) Localization of prostate cancer using 3 T MRI: comparison of T2-weighted and dynamic contrast-enhanced imaging. J Comput Assist Tomogr 30(1):7–11

    PubMed  Google Scholar 

  70. Franiel T et al (2008) Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence. Invest Radiol 43(7):481–487

    PubMed  Google Scholar 

  71. Futterer JJ et al (2005) Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology 237(2):541–549

    PubMed  Google Scholar 

  72. Heerschap A et al (1997) Proton MR spectroscopy of the normal human prostate with an endorectal coil and a double spin-echo pulse sequence. Magn Reson Med 37(2):204–213

    CAS  PubMed  Google Scholar 

  73. Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12(7):413–439

    CAS  PubMed  Google Scholar 

  74. Shukla-Dave A et al (2004) Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings–initial observations. Radiology 231(3):717–724

    PubMed  Google Scholar 

  75. Yacoe ME, Sommer G, Peehl D (1991) In vitro proton spectroscopy of normal and abnormal prostate. Magn Reson Med 19(2):429–438

    CAS  PubMed  Google Scholar 

  76. Kurhanewicz J et al (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology 198(3):795–805

    CAS  PubMed  Google Scholar 

  77. Males RG et al (2000) Clinical application of BASING and spectral/spatial water and lipid suppression pulses for prostate cancer staging and localization by in vivo 3D 1H magnetic resonance spectroscopic imaging. Magn Reson Med 43(1):17–22

    CAS  PubMed  Google Scholar 

  78. Obek C et al (1999) Comparison of digital rectal examination and biopsy results with the radical prostatectomy specimen. J Urol 161(2):494–498; discussion 498–499

    CAS  PubMed  Google Scholar 

  79. Wefer AE et al (2000) Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 164(2):400–404

    CAS  PubMed  Google Scholar 

  80. Weinreb JC et al (2009) Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 251(1):122–133

    PubMed Central  PubMed  Google Scholar 

  81. Zakian KL et al (2003) Transition zone prostate cancer: metabolic characteristics at 1H MR spectroscopic imaging–initial results. Radiology 229(1):241–247

    PubMed  Google Scholar 

  82. Zakian KL et al (2005) Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234(3):804–814

    PubMed  Google Scholar 

  83. Bonekamp D et al (2011) Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics 31(3):677–703

    PubMed Central  PubMed  Google Scholar 

  84. Westphalen AC et al (2009) Mucinous adenocarcinoma of the prostate: MRI and MR spectroscopy features. AJR Am J Roentgenol 193(3):W238–W243

    PubMed Central  PubMed  Google Scholar 

  85. Coakley FV et al (2002) Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging. Radiology 223(1):91–97

    PubMed  Google Scholar 

  86. Crehange G et al (2010) Tumor volume and metabolism of prostate cancer determined by proton magnetic resonance spectroscopic imaging at 3 T without endorectal coil reveal potential clinical implications in the context of radiation oncology. Int J Radiat Oncol Biol Phys 80(4):1087–1094

    PubMed  Google Scholar 

  87. Qayyum A et al (2004) Organ-confined prostate cancer: effect of prior transrectal biopsy on endorectal MRI and MR spectroscopic imaging. AJR Am J Roentgenol 183(4):1079–1083

    PubMed  Google Scholar 

  88. Kaji Y et al (1998) Localizing prostate cancer in the presence of postbiopsy changes on MR images: role of proton MR spectroscopic imaging. Radiology 206(3):785–790

    CAS  PubMed  Google Scholar 

  89. Engelbrecht MR et al (2002) Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur Radiol 12(9):2294–2302

    PubMed  Google Scholar 

  90. Futterer JJ et al (2007) Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Local staging accuracy of prostate cancer using endorectal coil MR imaging. Eur Radiol 17(4):1055–1065

    PubMed  Google Scholar 

  91. Tempany CM et al (1994) Staging of prostate cancer: results of Radiology Diagnostic Oncology Group project comparison of three MR imaging techniques. Radiology 192(1):47–54

    CAS  PubMed  Google Scholar 

  92. Barker PB, Hearshen DO, Boska MD (2001) Single-voxel proton MRS of the human brain at 1.5 T and 3.0 T. Magn Reson Med 45(5):765–769

    CAS  PubMed  Google Scholar 

  93. Gibbs P, Pickles MD, Turnbull LW (2006) Diffusion imaging of the prostate at 3.0 tesla. Invest Radiol 41(2):185–188

    PubMed  Google Scholar 

  94. Picchio M et al (2003) Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18 F]fluorodeoxyglucose-positron emission tomography. J Urol 169(4):1337–1340

    CAS  PubMed  Google Scholar 

  95. Jadvar H (2011) Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med 52(1):81–89

    PubMed Central  PubMed  Google Scholar 

  96. Hofer C et al (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36(1):31–35

    CAS  PubMed  Google Scholar 

  97. Liu IJ et al (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57(1):108–111

    CAS  PubMed  Google Scholar 

  98. Oyama N et al (2002) Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 4(1):99–104

    PubMed  Google Scholar 

  99. Van den Bergh L et al (2013) Does 11C-choline PET-CT contribute to multiparametric MRI for prostate cancer localisation? Strahlenther Onkol 189(9):789–795

    PubMed  Google Scholar 

  100. Grosu AL et al (2005) Positron emission tomography for radiation treatment planning. Strahlenther Onkol 181(8):483–499

    PubMed  Google Scholar 

  101. Picchio M et al (2010) Clinical evidence on PET/CT for radiation therapy planning in prostate cancer. Radiother Oncol 96(3):347–350

    PubMed  Google Scholar 

  102. Greene FI, Balch CM, Fleming ID, et al (2002) In: The American Joint Committee on Cancer (ed) AJCC cancer staging manual. Springer, New York, pp 309–316

    Google Scholar 

  103. Bostwick DG (1997) Staging prostate cancer–1997: current methods and limitations. Eur Urol 32(Suppl 3):2–14

    PubMed  Google Scholar 

  104. Yu KK et al (1997) Detection of extracapsular extension of prostate carcinoma with endorectal and phased-array coil MR imaging: multivariate feature analysis. Radiology 202(3):697–702

    CAS  PubMed  Google Scholar 

  105. Hull GW et al (2002) Cancer control with radical prostatectomy alone in 1,000 consecutive patients. J Urol 167(2 Pt 1):528–534

    PubMed  Google Scholar 

  106. Catalona WJ, Ramos CG, Carvalhal GF (1999) Contemporary results of anatomic radical prostatectomy. CA Cancer J Clin 49(5):282–296

    CAS  PubMed  Google Scholar 

  107. Bonekamp D, Macura KJ (2008) Dynamic contrast-enhanced magnetic resonance imaging in the evaluation of the prostate. Top Magn Reson Imaging 19(6):273–284

    PubMed  Google Scholar 

  108. Yu KK et al (1999) Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology 213(2):481–488

    CAS  PubMed  Google Scholar 

  109. Masterson TA, Touijer K (2008) The role of endorectal coil MRI in preoperative staging and decision-making for the treatment of clinically localized prostate cancer. MAGMA 21(6):371–377

    PubMed  Google Scholar 

  110. Naya Y, Babaian RJ (2003) The predictors of pelvic lymph node metastasis at radical retropubic prostatectomy. J Urol 170(6 Pt 1):2306–2310

    PubMed  Google Scholar 

  111. Wymenga LF et al (2001) Routine bone scans in patients with prostate cancer related to serum prostate-specific antigen and alkaline phosphatase. BJU Int 88(3):226–230

    CAS  PubMed  Google Scholar 

  112. Tamada T et al (2011) MRI appearance of prostatic stromal sarcoma in a young adult. Korean J Radiol 12(4):519–523

    PubMed Central  PubMed  Google Scholar 

  113. Lu-Yao GL, Yao SL (1997) Population-based study of long-term survival in patients with clinically localised prostate cancer. Lancet 349(9056):906–910

    CAS  PubMed  Google Scholar 

  114. Holmberg L et al (2002) A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. N Engl J Med 347(11):781–789

    PubMed  Google Scholar 

  115. Edge SB et al (2010) Prostate. In: AJCC cancer staging handbook. Springer, New York, pp 525–538

    Google Scholar 

  116. National Comprehensive Cancer Network (NCCN) (2012) Clinical practice guidelines in oncology: prostate cancer. National Comprehensive Cancer Network, Fort Washington

    Google Scholar 

  117. Slawin KM, Diblasio CJ, Kattan MW (2004) Minimally invasive therapy for prostate cancer: use of nomograms to counsel patients about the choice and probable outcome of therapy. Rev Urol 6(Suppl 4):S3–S8

    PubMed Central  PubMed  Google Scholar 

  118. Coakley FV et al (2002) Blood loss during radical retropubic prostatectomy: relationship to morphologic features on preoperative endorectal magnetic resonance imaging. Urology 59(6):884–888

    PubMed  Google Scholar 

  119. Paparel P et al (2009) Recovery of urinary continence after radical prostatectomy: association with urethral length and urethral fibrosis measured by preoperative and postoperative endorectal magnetic resonance imaging. Eur Urol 55(3):629–637

    PubMed  Google Scholar 

  120. Leibel SA et al (2002) Intensity-modulated radiotherapy. Cancer J 8(2):164–176

    PubMed  Google Scholar 

  121. Pollack A et al (2003) Radiation therapy dose escalation for prostate cancer: a rationale for IMRT. World J Urol 21(4):200–208

    PubMed  Google Scholar 

  122. Pollack A et al (2004) Prostate cancer radiotherapy dose response: an update of the fox chase experience. J Urol 171(3):1132–1136

    PubMed  Google Scholar 

  123. Kuban D et al (2003) Hazards of dose escalation in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 57(5):1260–1268

    PubMed  Google Scholar 

  124. Roach M 3rd et al (1996) Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 35(5):1011–1018

    PubMed  Google Scholar 

  125. Debois M et al (1999) The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer. Int J Radiat Oncol Biol Phys 45(4):857–865

    CAS  PubMed  Google Scholar 

  126. Rasch C et al (1999) Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 43(1):57–66

    CAS  PubMed  Google Scholar 

  127. Steenbakkers RJ et al (2003) Reduction of dose delivered to the rectum and bulb of the penis using MRI delineation for radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 57(5):1269–1279

    PubMed  Google Scholar 

  128. Cellini N et al (2002) Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys 53(3):595–599

    PubMed  Google Scholar 

  129. Pucar D, Sella T, Schoder H (2008) The role of imaging in the detection of prostate cancer local recurrence after radiation therapy and surgery. Curr Opin Urol 18(1):87–97

    PubMed  Google Scholar 

  130. Pickett B et al (1999) Static field intensity modulation to treat a dominant intra-prostatic lesion to 90 Gy compared to seven field 3-dimensional radiotherapy. Int J Radiat Oncol Biol Phys 44(4):921–929

    CAS  PubMed  Google Scholar 

  131. De Meerleer G et al (2005) The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother Oncol 75(3):325–333

    PubMed  Google Scholar 

  132. van Lin EN et al (2006) IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys 65(1):291–303

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugolino Alfonsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alfonsi, U., Ventriglia, A., Manfredi, R., Mucelli, R.P. (2015). Adenocarcinoma of the Prostate. In: Manfredi, R., Pozzi Mucelli, R. (eds) MRI of the Female and Male Pelvis. Springer, Cham. https://doi.org/10.1007/978-3-319-09659-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09659-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09658-2

  • Online ISBN: 978-3-319-09659-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics