Skip to main content

Quantum Discord in Quantum Information Theory

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

The role of quantum discord in the task of remote state preparation was considered by Dakić et al. (Nature Physics 8:666–670, 2012). In this task Alice aims to remotely prepare Bob’s system in the quantum state \(\mathinner {|{\psi }\rangle }=\frac{1}{\sqrt{2}}(\mathinner {|{0}\rangle }+e^{i\phi }\mathinner {|{1}\rangle }).\) To this end Alice and Bob have access to an additional shared quantum state and a classical communication channel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The inverse is not true in general, i.e., a separable operation does not necessarily correspond to LOCC [23].

  2. 2.

    The local operation that achieves this task is a measure-and-prepare map with Kraus operators \(K_{ab}^{\tilde{C}}=\sqrt{\sigma _{b}^{\tilde{C}}}\mathinner {|{a}\rangle }\mathinner {\langle {b}|}^{\tilde{C}}\).

References

  1. Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  2. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., et al.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  4. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)

    Book  MATH  Google Scholar 

  5. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Google Scholar 

  6. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  7. Giorgi, G.L.: Quantum discord and remote state preparation. Phys. Rev. A 88, 022315 (2013)

    Article  ADS  Google Scholar 

  8. Tufarelli, T., Girolami, D., Vasile, R., Bose, S., Adesso, G.: Quantum resources for hybrid communication via qubit-oscillator states. Phys. Rev. A 86, 052326 (2012)

    Article  ADS  Google Scholar 

  9. Horodecki, P., Tuziemski, J., Mazurek, P., Horodecki, R.: Can communication power of separable correlations exceed that of entanglement resource? Phys. Rev. Lett. 112, 140507 (2014)

    Article  ADS  Google Scholar 

  10. Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)

    Article  ADS  MATH  Google Scholar 

  11. Chuan, T.K., et al.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)

    Article  ADS  Google Scholar 

  12. Cubitt, T.S., Verstraete, F., Dür, W., Cirac, J.I.: Separable states can be used to distribute entanglement. Phys. Rev. Lett. 91, 037902 (2003)

    Article  ADS  Google Scholar 

  13. Mišta, L., Korolkova, N.: Distribution of continuous-variable entanglement by separable gaussian states. Phys. Rev. A 77, 050302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kay, A.: Using separable bell-diagonal states to distribute entanglement. Phys. Rev. Lett. 109, 080503 (2012)

    Article  ADS  Google Scholar 

  15. Park, J., Lee, S.: Separable states to distribute entanglement. Int. J. Theor. Phys. 51, 1100–1110 (2012)

    Article  MATH  Google Scholar 

  16. Bae, J., Cubitt, T., Acín, A.: Nonsecret correlations can be used to distribute secrecy. Phys. Rev. A 79, 032304 (2009)

    Article  ADS  Google Scholar 

  17. Streltsov, A., Kampermann, H., Bruß, D.: Limits for entanglement distribution with separable states. Phys. Rev. A 90, 032323 (2014)

    Google Scholar 

  18. Fedrizzi, A., et al.: Experimental distribution of entanglement with separable carriers. Phys. Rev. Lett. 111, 230504 (2013)

    Article  ADS  Google Scholar 

  19. Vollmer, C.E., et al.: Experimental entanglement distribution by separable states. Phys. Rev. Lett. 111, 230505 (2013)

    Article  ADS  Google Scholar 

  20. Peuntinger, C., et al.: Distributing entanglement with separable states. Phys. Rev. Lett. 111, 230506 (2013)

    Article  ADS  Google Scholar 

  21. Silberhorn, C.: Sharing entanglement without sending it. Physics 6, 132 (2013)

    Google Scholar 

  22. Streltsov, A., Zurek, W.H.: Quantum discord cannot be shared. Phys. Rev. Lett. 111, 040401 (2013)

    Article  ADS  Google Scholar 

  23. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Brandão, F.G.S.L., Piani, M., Horodecki, P.: Quantum Darwinism is Generic (2013). arXiv:1310.8640v1

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Streltsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Streltsov, A. (2015). Quantum Discord in Quantum Information Theory. In: Quantum Correlations Beyond Entanglement. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-09656-8_5

Download citation

Publish with us

Policies and ethics