Skip to main content

Part of the book series: New ICMI Study Series ((NISS))

Abstract

This chapter aims to provide insights into students’ perspectives about the meanings and purposes of mathematical tasks and to understand how appropriate task design might help minimize any gaps between teacher intentions and student mathematical activity. Throughout the chapter, we explore accounts of how students understand the meaning and purpose of the mathematical activity they undertake, as well as how task design might take account of what we know about these perspectives. For instance, we discuss research that indicates ways in which the perceptions of students may differ from the intentions of teachers and task designers and attempt to articulate the nature of those differences to raise both theoretical and methodological challenges concerning how an observer can appreciate the student’s point of view. We also discuss ways in which task design that takes account of students’ responses might reduce the discrepancies between the intentions of designers and/or teachers and students’ perceptions of their activity and achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ainley, J. (2008). Task design based on purpose and utility. ICMI 11. Available from http://tsg.icme11.org/document/get/291

  • Ainley, J. (2012). Developing purposeful mathematical thinking: A curious tale of apple trees. PNA, 6(3), 85–103. Available from http://www.pna.es/Numeros2/pdf/Ainley2012PNA6%283%29Developing.pdf

  • Ainley, J., Pratt, D., & Hansen, A. (2006). Connecting engagement and focus in pedagogic task design. British Educational Research Journal, 32(1), 23–38.

    Article  Google Scholar 

  • Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching. Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 2005, 14–46.

    Google Scholar 

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.

    Article  Google Scholar 

  • Bauersfeld, H. (1995). “Language Games” in the mathematics classroom: Their function and their effects. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 271–291). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Barquero, B., & Bosch, M. (2015). Didactic engineering as a research methodology: From fundamental situations to study and research paths. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education: An ICMI Study 22. Heidelberg: Springer.

    Google Scholar 

  • Bikner-Ahsbahs, A. (2003). Social extension of a psychological interest theory. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education and PMENA (Vol. 2, pp. 97–104). Honolulu, Hawaii: PME.

    Google Scholar 

  • Bikner-Ahsbahs, A.-A., & Janßen, T. (2013). Emergent tasks—spontaneous design supporting in-depth learning. In C. Margolinas (Ed.), Task design in mathematics education. (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 153–162), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Bloch, I. (1999). L’articulation du travail mathématique du professeur et de l’élève dans l’enseignement de l’analyse en Première scientifique. Recherches en Didactique des Mathématiques, 19(2), 135–193.

    Google Scholar 

  • Brousseau, G. (1982). Les “effets” du contrat didactique. Deuxième école d'été de didactique des mathématiques, Olivet. Available from http://guy-brousseau.com/2315/les-%C2%AB-effets-%C2%BB-du-%C2%AB-contrat-didactique-%C2%BB-1982/

  • Brousseau, G. (1986). La relation didactique: le milieu 4e école d’été de didactique des mathématiques (pp. 54–68): IREM de Paris 7. Available from http://math.unipa.it/~grim/brousseau_03_milieu.pdf

  • Brousseau, G. (1990). Le contrat didactique: le milieu. Recherches en Didactique des Mathématiques, 9(3), 309–336.

    Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Brousseau, G., Brousseau, N., & Warfield, G. (2014). Teaching fractions through situations: A fundamental experiment. Dordrecht/Heidelberg/New York/London: Springer.

    Book  Google Scholar 

  • Calleja, J. (2013). Mathematical investigations: The impact of students’ enacted activity on design, development, evaluation and implementation In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 163–172), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Clarke, D., & Mesiti, C. (2013). Writing the student into the task: Agency and voice. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 173–182), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Clivaz, S. (2012). Connaissances didactiques de l’enseignant et bifurcations didactiques: analyse d’un épisode. Recherches en didactique, 14, 29–46.

    Article  Google Scholar 

  • Coles, A., & Brown, L. (2013). Making distinctions in task design and student activity. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 183–192), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Collaborative, D.-B. R. (2003). Design-based research: An emerging paradigm for educational enquiry. Educational Researcher, 32(1), 5–8.

    Article  Google Scholar 

  • Comiti, C., Grenier, D., & Margolinas, C. (1995). Niveaux de connaissances en jeu lors d’interactions en situation de classe et modélisation de phénomènes didactiques. In G. Arsac, J. Gréa, D. Grenier, & A. Tiberghien (Eds.), Différents types de savoirs et leur articulation (pp. 92–113). Grenoble : La Pensée Sauvage. Available from http://halshs.archives-ouvertes.fr/halshs-00421007

  • Cooper, C., & Dunne, M. (2000). Assessing children’s mathematical knowledge. Buckingham, UK: Open University Press.

    Google Scholar 

  • Csikos, C., Szitànyi, J., & Kelemen, R. (2012). The effects of using drawings in developing young children’s mathematical word problem solving: A design experiment with third-grade Hungarian students. Educational Studies in Mathematics, 81, 47–65.

    Article  Google Scholar 

  • de Lange, J. (2015). There is, probably, no need for this presentation. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education: An ICMI Study 22. Heidelberg: Springer.

    Google Scholar 

  • Gardner, K. (2007). Investigating secondary school student’s experience of learning statistics. Dissertation Abstracts International (UMI No. 3301002).

    Google Scholar 

  • Gardner, K. (2013). Applying the phenomenographic approach to students’ conceptions of tasks. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 193–202), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Gerofsky, S. (1996). A linguistic and narrative view of word problems in mathematics education. For the Learning of Mathematics, 16(2), 36–45.

    Google Scholar 

  • Hegarty, M., Mayer, R., & Monk, C. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87(1), 18–32.

    Article  Google Scholar 

  • Hershkovitz, S., & Nesher, P. (1999). Tools to think with: Detecting different strategies in solving arithmetic word problems. Journal of Computers for Mathematical Learning, 3, 255–273.

    Article  Google Scholar 

  • Job, P., & Schneider, M. (2013). On what epistemological thinking brings (or does not bring) to the analysis of tasks in terms of potentialities for mathematical learning. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 203–210), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Johnson, H. L. (2012a). Reasoning about quantities involved in rate of change as varying simultaneously and independently. In R. Mayes & L. L. Hatfield (Eds.), Quantitative reasoning and mathematical modeling: A driver for STEM integrated education and teaching in context (Vol. 2, pp. 39–53). Laramie, WY: University of Wyoming College of Education.

    Google Scholar 

  • Johnson, H. L. (2012b). Reasoning about variation in the intensity of change in covarying quantities involved in rate of change. Journal of Mathematical Behavior, 31(3), 313–330.

    Article  Google Scholar 

  • Johnson, H. L. (2013). Designing covariation tasks to support students’ reasoning about quantities involved in rate of change In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 211–220), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Jonsson, B., Norqvist, M., Liljekvist, Y., & Lithner, J. (2014). Learning mathematics through algorithmic and creative reasoning. The Journal of Mathematical Behavior, 36, 20–32.

    Article  Google Scholar 

  • Knott, L., Olson, J., Adams, A., & Ely, R. (2013). Task design: Supporting teachers to independently create rich tasks. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 599–608), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Lesh, R., Hoover, M., & Kelly, A. E. (1993). Equity, assessment, and thinking mathematically: Principles for the design of model-eliciting activities. In Developments in school mathematics education around the world (Vol. 3, pp. 104–130). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Lin, P.-J., & Tsai, W.-H. (2013). A task design for conjecturing in primary classroom contexts. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 249–258), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Lithner, J., Jonsson, B., Granberg, C., Liljekvist, Y., Norqvist, M., & Olsson, J. (2013). Designing tasks that enhance mathematics learning through creative reasoning. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 221–230), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Margolinas, C. (2005). Les situations à bifurcations multiples: indices de dysfonctionnement ou de cohérence. In A. Mercier & C. Margolinas (Eds.), Balises en didactique des mathématiques (pp. Cédérom). Grenoble: La Pensée Sauvage. Available from http://halshs.archives-ouvertes.fr/halshs-00432229/fr/

  • Margolinas, C., & Steinbring, H. (1994). Double analyse d’un épisode: cercle épistémologique et structuration du milieu. In M. Artigue, R. Gras, C. Laborde, P. Tavignot, & N. Balacheff (Eds.), Vingt ans de didactique des mathématiques en France. Hommage à Guy Brousseau et Gérard Vergnaud (pp. 250–258). Grenoble: La pensée sauvage.

    Google Scholar 

  • Mason, J. (2002). Minding your Qs and Rs: Effective questioning and responding in the mathematics classroom. In L. Haggarty (Ed.), Aspects of teaching secondary mathematics: Perspectives on practice (pp. 248–258). London: RoutledgeFalmer.

    Google Scholar 

  • Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational Studies in Mathematics, 15(3), 277–289.

    Article  Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1987). The tree of knowledge: The biological roots of human understanding. Boston: Shambala.

    Google Scholar 

  • Palhares, P., Vieira, L., & Gimenez, J. (2013). Order of tasks in sequences of early algebra. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 241–248), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Patkin, D., & Gazit, A. (2011). Effect of difference in word formulation and mathematical characteristics of story problems on mathematics preservice teachers and practising teachers. International Journal of Mathematical Education in Science and Technology, 42(1), 75–87.

    Article  Google Scholar 

  • Pimm, D. (1987). Speaking mathematically. London: Routledge and Kegan Paul.

    Google Scholar 

  • Radonich, P., & Yoon, C. (2013). Using student solutions to design follow-up tasks to model-eliciting activities. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 259–268), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Sarrazy, B. (2002). Effects of variability of teaching on responsiveness to the didactic contract in arithmetic problem-solving among pupils of 9–10 years. European Journal of Psychology of Education, 17(4), 321–341.

    Article  Google Scholar 

  • Sarrazy, B., & Chopin, M.-P. (2010). Anthropo-didactical approach to teacher-pupil interactions in teaching mathematics at elementary school. Scientia in Educatione, 1(1), 73–85. Available from http://www.scied.cz/index.php/scied/article/view/55.

    Google Scholar 

  • Savard, A., Polotskaia, E., Freiman, V., & Gervais, C. (2013). Tasks to promote holistic flexible reasoning about simple additive structure. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 269–278), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Simon, M.-A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26, 114–145.

    Article  Google Scholar 

  • Strømskag Måsøval, H. (2013). Shortcomings in the milieu for algebraic generalisation arising from task design and vagueness in mathematical discourse. In C. Margolinas (Ed.), Task design in mathematics education (Proceedings of the International Commission on Mathematical Instruction Study 22, pp. 231–240), Oxford, UK. Available from http://hal.archives-ouvertes.fr/hal-00834054

  • Strømskag Måsøval, H. (2015). Students’ mathematical activity constrained by the milieu: A case of algebra. In Proceedings of NORMA 14, The Seventh Nordic Conference on Mathematics Education. Turku, Finland: University of Turku.

    Google Scholar 

  • Sullivan, P., & Lilburn, P. (2004). Open-ended Maths activities: Using “good” questions to enhance learning in mathematics. Melbourne: Oxford University Press.

    Google Scholar 

  • Swan, M. (1985). The language of functions and graphs. Nottingham: Shell Centre.

    Google Scholar 

  • Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295–312.

    Article  Google Scholar 

  • Verschaffel, L. (2002). Taking the modelling perspective seriously at elementary school level: Promises and pitfalls. In A. Cockburn & E. Nardi (Eds.), Proceedings of the Twenty Sixth Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 64–80). Norwich, UK: PME.

    Google Scholar 

  • Verschaffel, L., Greer, B., & Torbeyns, J. (2006). Numerical thinking. In A. Gutiérez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 51–82). Rotterdam: Sense Publishers.

    Google Scholar 

  • Wood, T. (1998). Alternative patterns of communication in mathematics classes: Funneling or focusing? In H. Steinbring, M. Bartolini Bussi, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp. 167–178). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Ainley .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This book was originally published with exclusive rights reserved by the Publisher in 2015 and was licensed as an open access publication in March 2021 under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this book may be included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material or in the Correction Note appended to the book. For details on rights and licenses please read the Correction https://doi.org/10.1007/978-3-319-09629-2_13. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Ainley, J., Margolinas, C. (2015). Accounting for Student Perspectives in Task Design. In: Watson, A., Ohtani, M. (eds) Task Design In Mathematics Education. New ICMI Study Series. Springer, Cham. https://doi.org/10.1007/978-3-319-09629-2_4

Download citation

Publish with us

Policies and ethics