Skip to main content

Distributed Transactional Contention Management as the Traveling Salesman Problem

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8576))

Abstract

In this paper we consider designing contention managers for distributed software transactional memory (DTM), given an input of n transactions sharing s objects in a network of m nodes. We first construct a dynamic ordering conflict graph \(G_c^{*}(\phi(\kappa))\) for an offline algorithm (κ,φ κ ). We show that finding an optimal schedule is equivalent to finding the offline algorithm for which the weight of the longest weighted path in \(G_c^{*}(\phi(\kappa))\) is minimized. We further illustrate that when the set of transactions are dynamically generated, processing transactions according to a χ(G c )-coloring of G c does not lead to an optimal schedule, where χ(G c ) is the chromatic number of G c . We prove that, for DTM, any online work conserving deterministic contention manager provides an \(\Omega(\max[s,\frac{s^2}{\overline{D}}])\) competitive ratio in a network with normalized diameter \(\overline{D}\). Compared with the Ω(s) competitive ratio for multiprocessor STM, the performance guarantee for DTM degrades by a factor proportional to \(\frac{s}{\overline{D}}\). To break this lower bound, we present a randomized algorithm Cutting, which needs partial information of transactions and an approximate algorithm A for the traveling salesman problem with approximation ratio φ A . We show that the average case competitive ratio of Cutting is \(O\big(s\cdot \phi_A\cdot\log^{2} m\log^{2} n\big)\), which is close to O(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention management as a non-clairvoyant scheduling problem. In: PODC, pp. 308–315 (2006)

    Google Scholar 

  2. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman problem. Technical Report CS-93-13, G.S.I.A., Carnegie Mellon University, Pittsburgh, USA (1976)

    Google Scholar 

  3. Diegues, N.L., Romano, P.: Bumper: Sheltering Transactions from Conflicts. In: SRDS, pp. 185–194 (2013)

    Google Scholar 

  4. Diegues, N.L., Romano, P.: Time-warp: lightweight abort minimization in transactional memory. In: PPOPP, pp. 167–178 (2014)

    Google Scholar 

  5. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention managers. In: PODC, pp. 258–264 (2005)

    Google Scholar 

  6. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Distributed Computing 20(3), 195–208 (2007)

    Article  MATH  Google Scholar 

  7. Hirve, S., Palmieri, R., Ravindran, B.: HiperTM: High Performance, Fault-Tolerant Transactional Memory. In: Chatterjee, M., Cao, J.-N., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 181–196. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. J. ACM 52, 602–626 (2005)

    Article  MathSciNet  Google Scholar 

  9. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  10. Khot, S.: Improved Inaproximability Results for MaxClique, Chromatic Number and Approximate Graph Coloring. In: FOCS, pp. 600–609 (2001)

    Google Scholar 

  11. Kim, J., Palmieri, R., Ravindran, B.: Enhancing Concurrency in Distributed Transactional Memory through Commutativity. In: Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 150–161. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Palmieri, R., Quaglia, F., Romano, P.: OSARE: Opportunistic Speculation in Actively REplicated Transactional Systems. In: SRDS, pp. 59–64 (2011)

    Google Scholar 

  13. Romano, P., Palmieri, R., Quaglia, F., Carvalho, N., Rodrigues, L.: An Optimal Speculative Transactional Replication Protocol. In: ISPA, pp. 449–457 (2010)

    Google Scholar 

  14. Romano, P., Palmieri, R., Quaglia, F., Carvalho, N., Rodrigues, L.: Brief announcement: on speculative replication of transactional systems. In: SPAA, pp. 69–71 (2010)

    Google Scholar 

  15. Saad, M.M., Ravindran, B.: HyFlow: a high performance distributed software transactional memory framework. In: HPDC, pp. 265–266 (2011)

    Google Scholar 

  16. Schneider, J., Wattenhofer, R.: Bounds on Contention Management Algorithms. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 441–451. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Sharma, G., Estrade, B., Busch, C.: Window-Based Greedy Contention Management for Transactional Memory. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 64–78. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Shavit, N., Touitou, D.: Software Transactional Memory. In: PODC, pp. 204–213 (1995)

    Google Scholar 

  19. Siek, K., Wojciechowski, P.T.: Brief announcement: towards a fully-articulated pessimistic distributed transactional memory. In: SPAA, pp. 111–114 (2013)

    Google Scholar 

  20. Turcu, A., Ravindran, B., Palmieri, R.: Hyflow2: a high performance distributed transactional memory framework in scala. In: PPPJ, pp. 79–88 (2013)

    Google Scholar 

  21. Zhang, B., Ravindran, B.: Dynamic analysis of the relay cache-coherence protocol for distributed transactional memory. In: IPDPS, pp. 1–11 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, B., Ravindran, B., Palmieri, R. (2014). Distributed Transactional Contention Management as the Traveling Salesman Problem. In: Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2014. Lecture Notes in Computer Science, vol 8576. Springer, Cham. https://doi.org/10.1007/978-3-319-09620-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09620-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09619-3

  • Online ISBN: 978-3-319-09620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics