Transgenic Mouse Models for Alcohol Metabolism, Toxicity, and Cancer

  • Claire Heit
  • Hongbin Dong
  • Ying Chen
  • Yatrik M. Shah
  • David C. Thompson
  • Vasilis VasiliouEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 815)


Alcohol abuse leads to tissue damage including a variety of cancers; however, the molecular mechanisms by which this damage occurs remain to be fully understood. The primary enzymes involved in ethanol metabolism include alcohol dehydrogenase (ADH), cytochrome P450 isoform 2E1, (CYP2E1), catalase (CAT), and aldehyde dehydrogenases (ALDH). Genetic polymorphisms in human genes encoding these enzymes are associated with increased risks of alcohol-related tissue damage, as well as differences in alcohol consumption and dependence. Oxidative stress resulting from ethanol oxidation is one established pathogenic event in alcohol-induced toxicity. Ethanol metabolism generates free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has been associated with diminished glutathione (GSH) levels as well as changes in other antioxidant mechanisms. In addition, the formation of protein and DNA adducts associated with the accumulation of ethanol-derived aldehydes can adversely affect critical biological functions and thereby promote cellular and tissue pathology. Animal models have proven to be valuable tools for investigating mechanisms underlying pathogenesis caused by alcohol. In this review, we provide a brief discussion on several animal models with genetic defects in alcohol-metabolizing enzymes and GSH-synthesizing enzymes and their relevance to alcohol research.


Dextran Sulfate Sodium ADH1 Gene Ethanol Metabolism Alcohol Toxicity Ethanol Toxicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by the National Institutes of Health Grants No. R24AA022057, No. R01EY14390, No. T32AA007464, CA148828, and DK095201.


  1. 1.
    Bouchery EE et al (2011) Economic costs of excessive alcohol consumption in the U.S., 2006. Am J Prev Med 41(5):516–524PubMedCrossRefGoogle Scholar
  2. 2.
    McKillop IH, Schrum LW (2009) Role of alcohol in liver carcinogenesis. Semin Liver Dis 29(2):222–232PubMedCrossRefGoogle Scholar
  3. 3.
    Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7(8):599–612PubMedCrossRefGoogle Scholar
  4. 4.
    Visapaa JP et al (2004) Increased cancer risk in heavy drinkers with the alcohol dehydrogenase 1C*1 allele, possibly due to salivary acetaldehyde. Gut 53(6):871–876PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Poschl G, Seitz HK (2004) Alcohol and cancer. Alcohol Alcohol 39(3):155–165PubMedCrossRefGoogle Scholar
  6. 6.
    Boffetta P, Hashibe M (2006) Alcohol and cancer. Lancet Oncol 7(2):149–156PubMedCrossRefGoogle Scholar
  7. 7.
    Reidy J, McHugh E, Stassen LF (2011) A review of the relationship between alcohol and oral cancer. Surgeon 9(5):278–283PubMedCrossRefGoogle Scholar
  8. 8.
    Edenberg HJ (2007) The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 30(1):5–13PubMedCentralPubMedGoogle Scholar
  9. 9.
    Deltour L, Foglio MH, Duester G (1999) Metabolic deficiencies in alcohol dehydrogenase Adh1, Adh3, and Adh4 null mutant mice. Overlapping roles of Adh1 and Adh4 in ethanol clearance and metabolism of retinol to retinoic acid. J Biol Chem 274(24):16796–16801PubMedCrossRefGoogle Scholar
  10. 10.
    Scott DM, Taylor RE (2007) Health-related effects of genetic variations of alcohol-metabolizing enzymes in African Americans. Alcohol Res Health 30(1):18–21PubMedCentralPubMedGoogle Scholar
  11. 11.
    Duester G et al (1999) Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem Pharmacol 58(3):389–395PubMedCrossRefGoogle Scholar
  12. 12.
    Lilla C et al (2005) Alcohol dehydrogenase 1B (ADH1B) genotype, alcohol consumption and breast cancer risk by age 50 years in a German case-control study. Br J Cancer 92(11):2039–2041PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Lu Y, Cederbaum AI (2008) CYP2E1 and oxidative liver injury by alcohol. Free Radic Biol Med 44(5):723–738PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Zimatkin SM et al (2006) Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res 30(9):1500–1505PubMedCrossRefGoogle Scholar
  15. 15.
    Vasiliou V et al (2006) CYP2E1 and catalase influence ethanol sensitivity in the central nervous system. Pharmacogenet Genomics 16(1):51–58PubMedCrossRefGoogle Scholar
  16. 16.
    Millonig G et al (2011) Ethanol-mediated carcinogenesis in the human esophagus implicates CYP2E1 induction and the generation of carcinogenic DNA-lesions. Int J Cancer 128(3):533–540PubMedCrossRefGoogle Scholar
  17. 17.
    Wang Y et al (2009) Ethanol-induced cytochrome P4502E1 causes carcinogenic etheno-DNA lesions in alcoholic liver disease. Hepatology 50(2):453–461PubMedCrossRefGoogle Scholar
  18. 18.
    Trafalis DT et al (2010) CYP2E1 and risk of chemically mediated cancers. Expert Opin Drug Metab Toxicol 6(3):307–319PubMedCrossRefGoogle Scholar
  19. 19.
    Druesne-Pecollo N et al (2009) Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet Oncol 10(2):173–180PubMedCrossRefGoogle Scholar
  20. 20.
    Morita M et al (2009) Genetic polymorphisms of CYP2E1 and risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Epidemiol Biomarkers Prev 18(1):235–241PubMedCrossRefGoogle Scholar
  21. 21.
    Goth LT, Nagy T (2012) Acatalasemia and diabetes mellitus. Arch Biochem Biophys 525(2):195–200PubMedCrossRefGoogle Scholar
  22. 22.
    Goth L, Rass P, Pay A (2004) Catalase enzyme mutations and their association with diseases. Mol Diagn 8(3):141–149PubMedCrossRefGoogle Scholar
  23. 23.
    Seitz HK et al (1990) Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology 98(2):406–413PubMedGoogle Scholar
  24. 24.
    Chen Y et al (2011) Aldehyde dehydrogenase 1B1 (ALDH1B1) is a potential biomarker for human colon cancer. Biochem Biophys Res Commun 405(2):173–179PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Husemoen LL et al (2008) The association of ADH and ALDH gene variants with alcohol drinking habits and cardiovascular disease risk factors. Alcohol Clin Exp Res 32(11):1984–1991PubMedGoogle Scholar
  26. 26.
    Linneberg A et al (2010) Genetic determinants of both ethanol and acetaldehyde metabolism influence alcohol hypersensitivity and drinking behaviour among Scandinavians. Clin Exp Allergy 40(1):123–130PubMedCrossRefGoogle Scholar
  27. 27.
    Little RG 2nd, Petersen DR (1983) Subcellular distribution and kinetic parameters of HS mouse liver aldehyde dehydrogenase. Comp Biochem Physiol C 74(2):271–279PubMedCrossRefGoogle Scholar
  28. 28.
    Bond SL, Wigle MR, Singh SM (1991) Acetaldehyde dehydrogenase (Ahd-2)-associated DNA polymorphisms in mouse strains with variable ethanol preferences. Alcohol Clin Exp Res 15(2):304–307PubMedCrossRefGoogle Scholar
  29. 29.
    Eriksson CJ (2001) The role of acetaldehyde in the actions of alcohol (update 2000). Alcohol Clin Exp Res 25(5 Suppl ISBRA):15S–32SPubMedCrossRefGoogle Scholar
  30. 30.
    Yokoyama A et al (2012) Development of squamous neoplasia in esophageal iodine-unstained lesions and the alcohol and aldehyde dehydrogenase genotypes of Japanese alcoholic men. Int J Cancer 130(12):2949–2960PubMedCrossRefGoogle Scholar
  31. 31.
    Yokoyama A et al (2011) p53 protein accumulation, iodine-unstained lesions, and alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 genotypes in Japanese alcoholic men with esophageal dysplasia. Cancer Lett 308(1):112–117PubMedCrossRefGoogle Scholar
  32. 32.
    Yukawa Y et al (2012) Combination of ADH1B*2/ALDH2*2 polymorphisms alters acetaldehyde-derived DNA damage in the blood of Japanese alcoholics. Cancer Sci 103(9):1651–1655PubMedCrossRefGoogle Scholar
  33. 33.
    Arranz S et al (2012) Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 4(7):759–781PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Tanaka T (2009) Colorectal carcinogenesis: review of human and experimental animal studies. J Carcinog 8:5PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Altamirano J, Bataller R (2011) Alcoholic liver disease: pathogenesis and new targets for therapy. Nat Rev Gastroenterol Hepatol 8(9):491–501PubMedCrossRefGoogle Scholar
  36. 36.
    Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141(5):1572–1585PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Albano E (2008) Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol Aspects Med 29(1–2):9–16PubMedCrossRefGoogle Scholar
  38. 38.
    Bergendi L et al (1999) Chemistry, physiology and pathology of free radicals. Life Sci 65(18–19):1865–1874PubMedCrossRefGoogle Scholar
  39. 39.
    Meister A (1982) Metabolism and function of glutathione: an overview. Biochem Soc Trans 10(2):78–79PubMedGoogle Scholar
  40. 40.
    Kretzschmar M (1996) Regulation of hepatic glutathione metabolism and its role in hepatotoxicity. Exp Toxicol Pathol 48(5):439–446PubMedCrossRefGoogle Scholar
  41. 41.
    Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263(33):17205–17208PubMedGoogle Scholar
  42. 42.
    Dalton TP et al (2004) Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med 37(10):1511–1526PubMedCrossRefGoogle Scholar
  43. 43.
    Chen Y et al (2005) Glutamate cysteine ligase catalysis: dependence on ATP and modifier subunit for regulation of tissue glutathione levels. J Biol Chem 280(40):33766–33774PubMedCrossRefGoogle Scholar
  44. 44.
    Lu SC (1999) Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J 13(10):1169–1183PubMedGoogle Scholar
  45. 45.
    Meister A (1995) Glutathione metabolism. Methods Enzymol 251:3–7PubMedCrossRefGoogle Scholar
  46. 46.
    Wu D, Cederbaum AI (2009) Oxidative stress and alcoholic liver disease. Semin Liver Dis 29(2):141–154PubMedCrossRefGoogle Scholar
  47. 47.
    Molotkov A et al (2002) Distinct retinoid metabolic functions for alcohol dehydrogenase genes Adh1 and Adh4 in protection against vitamin A toxicity or deficiency revealed in double null mutant mice. J Biol Chem 277(16):13804–13811PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Haseba T, Ohno Y (2010) A new view of alcohol metabolism and alcoholism—role of the high-Km Class III alcohol dehydrogenase (ADH3). Int J Environ Res Public Health 7(3):1076–1092PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Ho YS et al (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279(31):32804–32812PubMedCrossRefGoogle Scholar
  50. 50.
    Lee SS et al (1996) Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 271(20):12063–12067PubMedCrossRefGoogle Scholar
  51. 51.
    Valentine JL et al (1996) Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression. Toxicol Appl Pharmacol 141(1):205–213PubMedCrossRefGoogle Scholar
  52. 52.
    Wong FW, Chan WY, Lee SS (1998) Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol 153(1):109–118PubMedCrossRefGoogle Scholar
  53. 53.
    Wang X et al (2013) Cytochrome P450 2E1 potentiates ethanol induction of hypoxia and HIF-1alpha in vivo. Free Radic Biol Med 63:175–186PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Lu Y et al (2008) Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology 47(5):1483–1494PubMedCrossRefGoogle Scholar
  55. 55.
    Isse T et al (2002) Diminished alcohol preference in transgenic mice lacking aldehyde dehydrogenase activity. Pharmacogenetics 12(8):621–626PubMedCrossRefGoogle Scholar
  56. 56.
    Yu HS et al (2009) Characteristics of aldehyde dehydrogenase 2 (Aldh2) knockout mice. Toxicol Mech Methods 19(9):535–540PubMedCrossRefGoogle Scholar
  57. 57.
    Kiyoshi A et al (2009) Ethanol metabolism in ALDH2 knockout mice–blood acetate levels. Leg Med (Tokyo) 11(Suppl 1):S413–S415CrossRefGoogle Scholar
  58. 58.
    Isse T et al (2005) Aldehyde dehydrogenase 2 gene targeting mouse lacking enzyme activity shows high acetaldehyde level in blood, brain, and liver after ethanol gavages. Alcohol Clin Exp Res 29(11):1959–1964PubMedCrossRefGoogle Scholar
  59. 59.
    Oyama T et al (2007) A pilot study on subacute ethanol treatment of ALDH2 KO mice. J Toxicol Sci 32(4):421–428PubMedCrossRefGoogle Scholar
  60. 60.
    Isse T et al (2005) Aldehyde dehydrogenase 2 activity affects symptoms produced by an intraperitoneal acetaldehyde injection, but not acetaldehyde lethality. J Toxicol Sci 30(4):315–328PubMedCrossRefGoogle Scholar
  61. 61.
    Oyama T et al (2007) Susceptibility to inhalation toxicity of acetaldehyde in Aldh2 knockout mice. Front Biosci 12:1927–1934PubMedCrossRefGoogle Scholar
  62. 62.
    Kunugita N et al (2008) Increased frequencies of micronucleated reticulocytes and T-cell receptor mutation in Aldh2 knockout mice exposed to acetaldehyde. J Toxicol Sci 33(1):31–36PubMedCrossRefGoogle Scholar
  63. 63.
    Matsumoto A et al (2007) Single-dose ethanol administration downregulates expression of cytochrome p450 2E1 mRNA in aldehyde dehydrogenase 2 knockout mice. Alcohol 41(8):587–589PubMedCrossRefGoogle Scholar
  64. 64.
    Matsumoto A et al (2007) Lack of aldehyde dehydrogenase ameliorates oxidative stress induced by single-dose ethanol administration in mouse liver. Alcohol 41(1):57–59PubMedCrossRefGoogle Scholar
  65. 65.
    Jamal M et al (2013) Ethanol- and acetaldehyde-induced cholinergic imbalance in the hippocampus of Aldh2-knockout mice does not affect nerve growth factor or brain-derived neurotrophic factor. Brain Res 1539:41–47PubMedCrossRefGoogle Scholar
  66. 66.
    Ma H et al (2010) Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression: role of protein phosphatases. J Mol Cell Cardiol 49(2):322–329PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Shimizu Y et al (2011) Reduced bone formation in alcohol-induced osteopenia is associated with elevated p21 expression in bone marrow cells in aldehyde dehydrogenase 2-disrupted mice. Bone 48(5):1075–1086PubMedCrossRefGoogle Scholar
  68. 68.
    Nagayoshi H et al (2009) Increased formation of gastric N(2)-ethylidene-2′-deoxyguanosine DNA adducts in aldehyde dehydrogenase-2 knockout mice treated with ethanol. Mutat Res 673(1):74–77PubMedCrossRefGoogle Scholar
  69. 69.
    Matsumoto A et al (2008) Effects of 5-week ethanol feeding on the liver of aldehyde dehydrogenase 2 knockout mice. Pharmacogenet Genomics 18(10):847–852PubMedCrossRefGoogle Scholar
  70. 70.
    Kim YD et al (2007) Ethanol-induced oxidative DNA damage and CYP2E1 expression in liver tissue of Aldh2 knockout mice. J Occup Health 49(5):363–369PubMedCrossRefGoogle Scholar
  71. 71.
    Matsuda T et al (2007) Increased formation of hepatic N2-ethylidene-2′-deoxyguanosine DNA adducts in aldehyde dehydrogenase 2-knockout mice treated with ethanol. Carcinogenesis 28(11):2363–2366PubMedCrossRefGoogle Scholar
  72. 72.
    Skarnes WC et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Stagos D et al (2010) Aldehyde dehydrogenase 1B1: molecular cloning and characterization of a novel mitochondrial acetaldehyde-metabolizing enzyme. Drug Metab Dispos 38(10):1679–1687PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Fan X et al (2003) Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina. Mol Cell Biol 23(13):4637–4648PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Lassen N et al (2007) Multiple and additive functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in Aldh3a1(-/-)/Aldh1a1(-/-) knock-out mice. J Biol Chem 282(35):25668–25676PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Shi ZZ et al (2000) Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci U S A 97(10):5101–5106PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Chen Y et al (2007) Hepatocyte-specific Gclc deletion leads to rapid onset of steatosis with mitochondrial injury and liver failure. Hepatology 45(5):1118–1128PubMedCrossRefGoogle Scholar
  78. 78.
    Chen Y et al (2010) Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclc-knockout mice, providing a model for hepatic cirrhosis. J Hepatol 53(6):1085–1094PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Yang Y et al (2002) Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse. Novel model system for a severely compromised oxidative stress response. J Biol Chem 277(51):49446–49452PubMedCrossRefGoogle Scholar
  80. 80.
    McConnachie LA et al (2007) Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. Toxicol Sci 99(2):628–636PubMedCrossRefGoogle Scholar
  81. 81.
    Chen Y et al (2012) Glutathione-deficient mice are susceptible to TCDD-Induced hepatocellular toxicity but resistant to steatosis. Chem Res Toxicol 25(1):94–100PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Claire Heit
    • 1
  • Hongbin Dong
    • 1
  • Ying Chen
    • 1
  • Yatrik M. Shah
    • 2
  • David C. Thompson
    • 3
  • Vasilis Vasiliou
    • 4
    Email author
  1. 1.Department of Pharmaceutical SciencesSchool of Pharmacy, University of Colorado Denver Anschutz Medical CampusAuroraUSA
  2. 2.Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUSA
  3. 3.Department of Clinical PharmacySchool of Pharmacy, University of Colorado Anschutz Medical CampusAuroraUSA
  4. 4.Department of Environmental Health SciencesYale School of Public HealthNew HavenUSA

Personalised recommendations