Acetaldehyde and Retinaldehyde-Metabolizing Enzymes in Colon and Pancreatic Cancers

  • S. Singh
  • J. Arcaroli
  • D. C. Thompson
  • W. Messersmith
  • V. VasiliouEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 815)


Colorectal cancer (CRC) and pancreatic cancer are two very significant contributors to cancer-related deaths. Chronic alcohol consumption is an important risk factor for these cancers. Ethanol is oxidized primarily by alcohol dehydrogenases to acetaldehyde, an agent capable of initiating tumors by forming adducts with proteins and DNA. Acetaldehyde is metabolized by ALDH2, ALDH1B1, and ALDH1A1 to acetate. Retinoic acid (RA) is required for cellular differentiation and is known to arrest tumor development. RA is synthesized from retinaldehyde by the retinaldehyde dehydrogenases, specifically ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1. By eliminating acetaldehyde and generating RA, ALDHs can play a crucial regulatory role in the initiation and progression of cancers. ALDH1 catalytic activity has been used as a biomarker to identify and isolate normal and cancer stem cells; its presence in a tumor is associated with poor prognosis in colon and pancreatic cancer. In summary, these ALDHs are not only biomarkers for CRC and pancreatic cancer but also play important mechanistic role in cancer initiation, progression, and eventual prognosis.


Acetaldehyde ALDH Biomarker Colorectal cancer Pancreatic cancer Retinaldehyde Stem cells 



We would like to thank our colleagues for critically reviewing this manuscript. This work was supported, in part, by the following NIH grants; AA022057 and EY11490.


  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30PubMedCrossRefGoogle Scholar
  3. 3.
    Wei EK, Wolin KY, Colditz GA (2010) Time course of risk factors in cancer etiology and progression. J Clin Oncol 28:4052–4057PubMedCrossRefGoogle Scholar
  4. 4.
    Kaneko R, Sato Y, An Y et al (2010) Clinico-epidemiologic study of the metabolic syndrome and lifestyle factors associated with the risk of colon adenoma and adenocarcinoma. Asian Pac J Cancer Prev 11:975–983PubMedGoogle Scholar
  5. 5.
    Cho E, Smith-Warner SA, Ritz J et al (2004) Alcohol intake and colorectal cancer: a pooled analysis of 8 cohort studies. Ann Intern Med 140:603–613PubMedCrossRefGoogle Scholar
  6. 6.
    Fedirko V, Tramacere I, Bagnardi V et al (2011) Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol 22:1958–1972PubMedCrossRefGoogle Scholar
  7. 7.
    Wilson JS, Apte MV (2003) Role of alcohol metabolism in alcoholic pancreatitis. Pancreas 27:311–315PubMedCrossRefGoogle Scholar
  8. 8.
    Brennan P, Boffetta P (2004) Mechanistic considerations in the molecular epidemiology of head and neck cancer. IARC Sci Publ 393–414Google Scholar
  9. 9.
    Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7:599–612PubMedCrossRefGoogle Scholar
  10. 10.
    Seitz HK, Stickel F (2010) Acetaldehyde as an underestimated risk factor for cancer development: role of genetics in ethanol metabolism. Genes Nutr 5:121–128PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Singh S, Brocker C, Koppaka V et al (2013) Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 56:89–101PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Yu HS, Oyama T, Isse T et al (2010) Formation of acetaldehyde-derived DNA adducts due to alcohol exposure. Chem Biol Interact 188:367–375PubMedCrossRefGoogle Scholar
  13. 13.
    Secretan B, Straif K, Baan R et al (2009) A review of human carcinogens—Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol 10:1033–1034PubMedCrossRefGoogle Scholar
  14. 14.
    Stagos D, Chen Y, Brocker C et al (2010) Aldehyde dehydrogenase 1B1: molecular cloning and characterization of a novel mitochondrial acetaldehyde-metabolizing enzyme. Drug Metab Dispos 38:1679–1687PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kanda J, Matsuo K, Suzuki T et al (2009) Impact of alcohol consumption with polymorphisms in alcohol-metabolizing enzymes on pancreatic cancer risk in Japanese. Cancer Sci 100:296–302PubMedCrossRefGoogle Scholar
  16. 16.
    Yokoyama A, Muramatsu T, Ohmori T et al (1998) Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis 19:1383–1387PubMedCrossRefGoogle Scholar
  17. 17.
    Storms RW, Trujillo AP, Springer JB et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 96:9118–9123PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Hess DA, Meyerrose TE, Wirthlin L et al (2004) Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 104:1648–1655PubMedCrossRefGoogle Scholar
  19. 19.
    Armstrong L, Stojkovic M, Dimmick I et al (2004) Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 22:1142–1151PubMedCrossRefGoogle Scholar
  20. 20.
    Ran D, Schubert M, Pietsch L et al (2009) Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Exp Hematol 37:1423–1434PubMedCrossRefGoogle Scholar
  21. 21.
    Deng S, Yang X, Lassus H et al (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5:e10277PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Silva IA, Bai S, McLean K et al (2011) Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 71:3991–4001PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Wang YC, Yo YT, Lee HY et al (2012) ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome. Am J Pathol 180:1159–1169PubMedCrossRefGoogle Scholar
  24. 24.
    van den Hoogen C, van der Horst G, Cheung H et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70:5163–5173PubMedCrossRefGoogle Scholar
  25. 25.
    van den Hoogen C, van der Horst G, Cheung H et al (2011) The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis. Clin Exp Metastasis 28:615–625PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Charafe-Jauffret E, Ginestier C, Iovino F et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16:45–55PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Marcato P, Dean CA, Pan D et al (2011) Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 29:32–45PubMedCrossRefGoogle Scholar
  29. 29.
    Langan RC, Mullinax JE, Ray S et al (2012) A pilot study assessing the potential role of non-CD133 colorectal cancer stem cells as biomarkers. J Cancer 3:231–240PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rasheed ZA, Yang J, Wang Q et al (2010) Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 102:340–351PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Carpentino JE, Hynes MJ, Appelman HD et al (2009) Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 69:8208–8215PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    McCart AE, Vickaryous NK, Silver A (2008) Apc mice: models, modifiers and mutants. Pathol Res Pract 204:479–490PubMedCrossRefGoogle Scholar
  33. 33.
    Zakhari S, Vasiliou V, Guo QM (eds) (2011) Alcohol and cancer, 1st edn. Springer, New YorkGoogle Scholar
  34. 34.
    Visapaa JP, Jokelainen K, Nosova T, Salaspuro M (1998) Inhibition of intracolonic acetaldehyde production and alcoholic fermentation in rats by ciprofloxacin. Alcohol Clin Exp Res 22:1161–1164PubMedCrossRefGoogle Scholar
  35. 35.
    Jelski W, Zalewski B, Chrostek L, Szmitkowski M (2004) The activity of class I, II, III, and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in colorectal cancer. Dig Dis Sci 49:977–981PubMedCrossRefGoogle Scholar
  36. 36.
    Salaspuro M (1997) Microbial metabolism of ethanol and acetaldehyde and clinical consequences. Addict Biol 2:35–46CrossRefGoogle Scholar
  37. 37.
    Seitz HK, Simanowski UA, Garzon FT et al (1990) Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology 98:406–413PubMedGoogle Scholar
  38. 38.
    Simanowski UA, Suter P, Russell RM et al (1994) Enhancement of ethanol induced rectal mucosal hyper regeneration with age in F344 rats. Gut 35:1102–1106PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Chen YC, Peng GS, Tsao TP et al (2009) Pharmacokinetic and pharmacodynamic basis for overcoming acetaldehyde-induced adverse reaction in Asian alcoholics, heterozygous for the variant ALDH2*2 gene allele. Pharmacogenet Genomics 19:588–599PubMedCrossRefGoogle Scholar
  40. 40.
    Jackson BC, Holmes RS, Backos DS et al (2013) Comparative genomics, molecular evolution and computational modeling of ALDH1B1 and ALDH2. Chem Biol Interact 202:11–21PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Duester G (2000) Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem 267:4315–4324PubMedCrossRefGoogle Scholar
  42. 42.
    Yoshida A, Hsu LC, Dave V (1992) Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme 46:239–244PubMedGoogle Scholar
  43. 43.
    Suzuki R, Shintani T, Sakuta H et al (2000) Identification of RALDH-3, a novel retinaldehyde dehydrogenase, expressed in the ventral region of the retina. Mech Dev 98:37–50PubMedCrossRefGoogle Scholar
  44. 44.
    Niederreither K, Fraulob V, Garnier JM et al (2002) Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse. Mech Dev 110:165–171PubMedCrossRefGoogle Scholar
  45. 45.
    Sima A, Parisotto M, Mader S, Bhat PV (2009) Kinetic characterization of recombinant mouse retinal dehydrogenase types 3 and 4 for retinal substrates. Biochim Biophys Acta 1790:1660–1664PubMedCrossRefGoogle Scholar
  46. 46.
    Lin M, Napoli JL (2000) cDNA cloning and expression of a human aldehyde dehydrogenase (ALDH) active with 9-cis-retinal and identification of a rat ortholog, ALDH12. J Biol Chem 275:40106–40112PubMedCrossRefGoogle Scholar
  47. 47.
    Kim H, Lapointe J, Kaygusuz G et al (2005) The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer. Cancer Res 65:8118–8124PubMedCrossRefGoogle Scholar
  48. 48.
    Mira YLR, Zheng WL, Kuppumbatti YS et al (2000) Retinol conversion to retinoic acid is impaired in breast cancer cell lines relative to normal cells. J Cell Physiol 185:302–309CrossRefGoogle Scholar
  49. 49.
    Touma SE, Perner S, Rubin MA et al (2009) Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochem Pharmacol 78:1127–1138PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6:345–364PubMedCrossRefGoogle Scholar
  51. 51.
    Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954PubMedGoogle Scholar
  52. 52.
    Shimizu M, Takai K, Moriwaki H (2009) Strategy and mechanism for the prevention of hepatocellular carcinoma: phosphorylated retinoid X receptor alpha is a critical target for hepatocellular carcinoma chemoprevention. Cancer Sci 100:369–374PubMedCrossRefGoogle Scholar
  53. 53.
    Boone CW, Kelloff GJ, Malone WE (1990) Identification of candidate cancer chemopreventive agents and their evaluation in animal models and human clinical trials: a review. Cancer Res 50:2–9PubMedGoogle Scholar
  54. 54.
    Warrell RP Jr, Frankel SR, Miller WH Jr et al (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 324:1385–1393PubMedCrossRefGoogle Scholar
  55. 55.
    Zheng Y, Kramer PM, Lubet RA et al (1999) Effect of retinoids on AOM-induced colon cancer in rats: modulation of cell proliferation, apoptosis and aberrant crypt foci. Carcinogenesis 20:255–260PubMedCrossRefGoogle Scholar
  56. 56.
    Wargovich MJ, Jimenez A, McKee K et al (2000) Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis 21:1149–1155PubMedCrossRefGoogle Scholar
  57. 57.
    Balasubramanian S, Chandraratna RA, Eckert RL (2004) Suppression of human pancreatic cancer cell proliferation by AGN194204, an RXR-selective retinoid. Carcinogenesis 25:1377–1385PubMedCrossRefGoogle Scholar
  58. 58.
    Pettersson F, Colston KW, Dalgleish AG (2001) Retinoic acid enhances the cytotoxic effects of gemcitabine and cisplatin in pancreatic adenocarcinoma cells. Pancreas 23:273–279PubMedCrossRefGoogle Scholar
  59. 59.
    Mollersen L, Paulsen JE, Olstorn HB et al (2004) Dietary retinoic acid supplementation stimulates intestinal tumour formation and growth in multiple intestinal neoplasia (Min)/+mice. Carcinogenesis 25:149–153PubMedCrossRefGoogle Scholar
  60. 60.
    Schug TT, Berry DC, Shaw NS et al (2007) Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129:723–733PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Di-Poi N, Tan NS, Michalik L et al (2002) Antiapoptotic role of PPARbeta in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol Cell 10:721–733PubMedCrossRefGoogle Scholar
  62. 62.
    Koshiyama A, Ichibangase T, Imai K (2013) Comprehensive fluorogenic derivatization-liquid chromatography/tandem mass spectrometry proteomic analysis of colorectal cancer cell to identify biomarker candidate. Biomed Chromatogr 27:440–450PubMedCrossRefGoogle Scholar
  63. 63.
    Peters JM, Shah YM, Gonzalez FJ (2012) The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 12:181–195PubMedCentralPubMedGoogle Scholar
  64. 64.
    McDonald SA, Preston SL, Lovell MJ et al (2006) Mechanisms of disease: from stem cells to colorectal cancer. Nat Clin Pract Gastroenterol Hepatol 3:267–274PubMedCrossRefGoogle Scholar
  65. 65.
    Huang EH, Hynes MJ, Zhang T et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69:3382–3389PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115PubMedCrossRefGoogle Scholar
  68. 68.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedCrossRefGoogle Scholar
  69. 69.
    Shmelkov SV, Butler JM, Hooper AT et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120PubMedCentralPubMedGoogle Scholar
  70. 70.
    Arcaroli JJ, Powell RW, Varella-Garcia M et al (2012) ALDH+ tumor-initiating cells exhibiting gain in NOTCH1 gene copy number have enhanced regrowth sensitivity to a gamma-secretase inhibitor and irinotecan in colorectal cancer. Mol Oncol 6:370–381PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Chen Y, Orlicky DJ, Matsumoto A et al (2011) Aldehyde dehydrogenase 1B1 (ALDH1B1) is a potential biomarker for human colon cancer. Biochem Biophys Res Commun 405:173–179PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284PubMedCrossRefGoogle Scholar
  73. 73.
    Kim MP, Fleming JB, Wang H et al (2011) ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One 6:e20636PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Jimeno A, Feldmann G, Suarez-Gauthier A et al (2009) A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 8:310–314PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Gentry T, Foster S, Winstead L et al (2007) Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implications for cell therapy. Cytotherapy 9:259–274PubMedCrossRefGoogle Scholar
  76. 76.
    Marcato P, Dean CA, Giacomantonio CA, Lee PW (2011) Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 10:1378–1384PubMedCrossRefGoogle Scholar
  77. 77.
    Corti S, Locatelli F, Papadimitriou D et al (2006) Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells 24:975–985PubMedCrossRefGoogle Scholar
  78. 78.
    Foo LC, Dougherty JD (2013) Aldh1L1 is expressed by postnatal neural stem cells in vivo. Glia 61:1533–1541PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Tanei T, Morimoto K, Shimazu K et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15:4234–4241PubMedCrossRefGoogle Scholar
  80. 80.
    Charafe-Jauffret E, Ginestier C, Iovino F et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Le Magnen C, Bubendorf L, Rentsch CA et al (2013) Characterization and clinical relevance of ALDH bright populations in prostate cancer. Clin Cancer Res 19:5361–5371PubMedCrossRefGoogle Scholar
  82. 82.
    Landen CN Jr, Goodman B, Katre AA et al (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther 9:3186–3199PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Saw YT, Yang J, Ng SK et al (2012) Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures. BMC Cancer 12:329PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Dylla SJ, Beviglia L, Park IK et al (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3:e2428PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Jiang F, Qiu Q, Khanna A et al (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7:330–8PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang Q, Taguchi A, Schliekelman M et al (2011) Comprehensive proteomic profiling of aldehyde dehydrogenases in lung adenocarcinoma cell lines. Int J Proteomics 2011:145010PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Chen YC, Chen YW, Hsu HS et al (2009) Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 385:307–13PubMedCrossRefGoogle Scholar
  88. 88.
    Kim SK, Kim H, Lee DH et al (2013) Reversing the intractable nature of pancreatic cancer by selectively targeting ALDH-high, therapy-resistant cancer cells. PLoS One 8:e78130PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Ma S, Chan KW, Lee TK et al (2008) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 6:1146–53PubMedCrossRefGoogle Scholar
  90. 90.
    Colombo F, Baldan F, Mazzucchelli S et al (2011) Evidence of distinct tumour-propagating cell populations with different properties in primary human hepatocellular carcinoma. PLoS One 6:e21369PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Gagnon I, Duester G, Bhat PV (2003) Enzymatic characterization of recombinant mouse retinal dehydrogenase type 1. Biochem Pharmacol 65:1685–90PubMedCrossRefGoogle Scholar
  92. 92.
    Gagnon I, Duester G, Bhat PV (2002) Kinetic analysis of mouse retinal dehydrogenase type-2 (RALDH2) for retinal substrates. Biochim Biophys Acta 1596:156–62PubMedCrossRefGoogle Scholar
  93. 93.
    Graham CE, Brocklehurst K, Pickersgill RW, Warren MJ (2006) Characterization of retinaldehyde dehydrogenase 3. Biochem J 394:67–75PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • S. Singh
    • 1
  • J. Arcaroli
    • 2
  • D. C. Thompson
    • 3
  • W. Messersmith
    • 2
  • V. Vasiliou
    • 4
    Email author
  1. 1.Department of Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraUSA
  2. 2.Division of Medical OncologyUniversity of Colorado School of MedicineAuroraUSA
  3. 3.Department of Clinical PharmacyUniversity of Colorado School of MedicineAuroraUSA
  4. 4.Department of Environmental Health SciencesYale School of Public HealthNew HavenUSA

Personalised recommendations