Skip to main content

Bayesian Gait Optimization for Bipedal Locomotion

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8426))

Included in the following conference series:

Abstract

One of the key challenges in robotic bipedal locomotion is finding gait parameters that optimize a desired performance criterion, such as speed, robustness or energy efficiency. Typically, gait optimization requires extensive robot experiments and specific expert knowledge. We propose to apply data-driven machine learning to automate and speed up the process of gait optimization. In particular, we use Bayesian optimization to efficiently find gait parameters that optimize the desired performance metric. As a proof of concept we demonstrate that Bayesian optimization is near-optimal in a classical stochastic optimal control framework. Moreover, we validate our approach to Bayesian gait optimization on a low-cost and fragile real bipedal walker and show that good walking gaits can be efficiently found by Bayesian optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The correct notation would be \(\alpha (\hat{f}(\varvec{\theta }))\), but we use \(\alpha (\varvec{\theta })\) for notational convenience.

  2. 2.

    Videos are available at http://www.ias.tu-darmstadt.de/Research/Fox.

References

  1. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. (JMLR) 3, 397–422 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. (JMLR) 13, 281–305 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn. Athena Scientific, Belmont (2007)

    Google Scholar 

  4. Brochu, E., Cora, V.M., De Freitas, N.:. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

  5. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.P.: An experimental comparison of Bayesian optimization for bipedal locomotion. In: Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1951–1958 (2014)

    Google Scholar 

  7. Chernova, S., Veloso, M.: An evolutionary approach to gait learning for four-legged robots. In: Proceedings of Intelligent Robots and Systems (IROS), vol. 3, pp. 2562–2567. IEEE (2004)

    Google Scholar 

  8. Cox, D.D., John, S.: SDO: a statistical method for global optimization. In: Alexandrov, N., Hussaini, M.Y. (eds.) Multidisciplinary Design Optimization: State of the Art, pp. 315–329. SIAM, Philadelpha (1997)

    Google Scholar 

  9. Garnett, R., Osborne, M.A., Roberts, S.J.: Bayesian optimization for sensor set selection. In: Information Processing in Sensor Networks, pp. 209–219. ACM (2010)

    Google Scholar 

  10. Gopalan, N., Deisenroth, M.P., Peters, J.: Feedback error learning for rhythmic motor primitives. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

  11. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control 46(1), 51–64 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hennig, P., Schuler, C.J.: Entropy search for information-efficient global optimization. J. Mach. Learn. Res. 13, 1809–1837 (2012)

    MATH  MathSciNet  Google Scholar 

  13. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning motor primitives. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems (NIPS), vol. 15. MIT Press, Cambridge (2003)

    Google Scholar 

  14. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4), 345–383 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jones, D.R., Perttune, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theor. Appl. 79(1), 157–181 (1993)

    Article  MATH  Google Scholar 

  16. Kober, J., Peters, J.: Learning motor primitives for robotics. In: International Conference on Robotics and Automation (ICRA) (2009)

    Google Scholar 

  17. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86, 97 (1964)

    Article  Google Scholar 

  18. Lizotte, D., Wang, T., Bowling, M., Schuurmans, D.: Automatic gait optimization with Gaussian process regression. In: Proceedings of International Joint Conferences on Artificial Intelligence (IJCAI), pp. 944–949 (2007)

    Google Scholar 

  19. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. Towards Global Optim. 2, 117–129 (1978)

    Google Scholar 

  20. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.: Learning from demonstration and adaptation of biped locomotion. Robot. Autonom. Syst. 47(2), 79–91 (2004)

    Article  Google Scholar 

  21. Osborne, M.A., Garnett, R., Roberts, S.J.: Gaussian processes for global optimization. In: 3rd International Conference on Learning and Intelligent Optimization (LION3), pp. 1–15 (2009)

    Google Scholar 

  22. Pongas, D., Billard, A., Schaal, S.:. Rapid synchronization and accurate phase-locking of rhythmic motor primitives. In: Proceedings of Intelligent Robots and Systems (IROS), pp. 2911–2916. IEEE (2005)

    Google Scholar 

  23. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  24. Renjewski, D., Seyfarth, A.: Robots in human biomechanics - a study on ankle push-off in walking. Bioinspir. Biomimetics 7(3), 036005 (2012)

    Article  Google Scholar 

  25. Renjewski, D.: An engineering contribution to human gait biomechanics. Ph.D. Thesis, TU Ilmenau (2012)

    Google Scholar 

  26. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems (NIPS) (2012)

    Google Scholar 

  27. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. In: Proceedings of International Conference on Machine Learning (ICML), pp. 1015–1022 (2010)

    Google Scholar 

  28. Tedrake, R., Weirui Zhang, T., Sebastian Seung, H.: Learning to walk in 20 minutes. In: Proceedings of the 14th Yale Workshop on Adaptive and Learning Systems (2005)

    Google Scholar 

  29. Tesch, M., Schneider, J., Choset, H.: Using response surfaces and expected improvement to optimize snake robot gait parameters. In: Proceedings of Intelligent Robots and Systems (IROS), pp. 1069–1074. IEEE (2011)

    Google Scholar 

Download references

Acknowledgements

R.C. thanks his father, Enrico Calandra, and Giuseppe Lo Cicero for the invaluable lessons they provided in, among others, life, mechanics and electronics. “Always double-check; then check again.”

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreements #270327 (CompLACS) and #600716 (CoDyCo) and the Department of Computing, Imperial College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Calandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Calandra, R., Gopalan, N., Seyfarth, A., Peters, J., Deisenroth, M.P. (2014). Bayesian Gait Optimization for Bipedal Locomotion. In: Pardalos, P., Resende, M., Vogiatzis, C., Walteros, J. (eds) Learning and Intelligent Optimization. LION 2014. Lecture Notes in Computer Science(), vol 8426. Springer, Cham. https://doi.org/10.1007/978-3-319-09584-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09584-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09583-7

  • Online ISBN: 978-3-319-09584-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics