Skip to main content

MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8426))

Included in the following conference series:

Abstract

The aim of this work is to compare different approaches for parallelization in model-based optimization. As another alternative aside from the existing methods, we propose using a multi-objective infill criterion that rewards both the diversity and the expected improvement of the proposed points. This criterion can be applied more universally than the existing ones because it has less requirements. Internally, an evolutionary algorithm is used to optimize this criterion. We verify the usefulness of the approach on a large set of established benchmark problems for black-box optimization. The experiments indicate that the new method’s performance is competitive with other batch techniques and single-step EGO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See https://github.com/berndbischl/mlrMBO

References

  1. Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs, C., Konen, W.: Tuning and evolution of support vector kernels. Evol. Intel. 5(3), 153–170 (2012)

    Article  Google Scholar 

  2. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Hess, S., Wagner, T., Bischl, B.: PROGRESS: progressive reinforcement-learning-based surrogate selection. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 110–124. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Krige, D.: A statistical approach to some basic mine valuation problems on the witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52(6), 119–139 (1951)

    Google Scholar 

  6. Locatelli, M.: Bayesian algorithms for one-dimensional global optimization. J. Global Optim. 10(1), 57–76 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4), 345–383 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Vazquez, E., Bect, J.: Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J. Stat. Plann. Infer. 140(11), 3088–3095 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intel. in Expensive Opti. Prob. ALO, vol. 2, pp. 131–162. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 413–418. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Chevalier, C., Ginsbourger, D.: Fast computation of the multi-points expected improvement with applications in batch selection. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 59–69. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 55–70. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  14. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do additional objectives make a problem harder? In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, pp. 765–772. ACM (2007)

    Google Scholar 

  15. Tran, T.D., Brockhoff, D., Derbel, B.: Multiobjectivization with NSGA-II on the Noiseless BBOB Testbed. In: GECCO (Companion), Workshop on Black-Box Optimization Benchmarking (BBOB’2013), Amsterdam, Pays-Bas, July 2013

    Google Scholar 

  16. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, pp. 641–648. ACM, New York (2011)

    Google Scholar 

  17. Wessing, S., Preuss, M., Rudolph, G.: Niching by multiobjectivization with neighbor information: Trade-offs and benefits. In: IEEE Congress on Evolutionary Computation (CEC), pp. 103–110 (2013)

    Google Scholar 

  18. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  19. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Technical report RR-6829, INRIA (2009). http://hal.inria.fr/inria-00362633/en

  20. Mersmann, O., Bischl, B., Bossek, J., Judt, L.: soobench: Single Objective Optimization Benchmark Functions. R package version 1.1-164

    Google Scholar 

  21. Bischl, B.: mlr: Machine Learning in R. R package version 1.2

    Google Scholar 

  22. Conover, W.: Practical Nonparametric Statistics, 2nd edn. Wiley, New York (1980)

    Google Scholar 

Download references

Acknowledgements

This paper is based on investigations of the projects B3 and C2 of the Collaborative Research Center SFB 823, which are kindly supported by Deutsche Forschungsgemeinschaft (DFG). It is also partly supported by the French national research agency (ANR) within the Modeles Numeriques project NumBBO. The authors also thank Tobias Wagner for fruitful discussions of multiobjective infill criteria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Bischl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C. (2014). MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization. In: Pardalos, P., Resende, M., Vogiatzis, C., Walteros, J. (eds) Learning and Intelligent Optimization. LION 2014. Lecture Notes in Computer Science(), vol 8426. Springer, Cham. https://doi.org/10.1007/978-3-319-09584-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09584-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09583-7

  • Online ISBN: 978-3-319-09584-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics