Skip to main content

Algorithm Portfolios for Noisy Optimization: Compare Solvers Early

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8426))

Included in the following conference series:

Abstract

Noisy optimization is the optimization of objective functions corrupted by noise. A portfolio of algorithms is a set of algorithms equipped with an algorithm selection tool for distributing the computational power among them. We study portfolios of noisy optimization solvers, show that different settings lead to different performances, obtain mathematically proved performance (in the sense that the portfolio performs nearly as well as the best of its’ algorithms) by an ad hoc selection algorithm dedicated to noisy optimization. A somehow surprising result is that it is better to compare solvers with some lag; i.e., recommend the current recommendation of the best solver, selected from a comparison based on their recommendations earlier in the run.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aha, D.W.: Generalizing from case studies: a case study. In: Proceedings of the 9th International Workshop on Machine Learning, pp. 1–10. Morgan Kaufmann Publishers Inc. (1992)

    Google Scholar 

  2. Armstrong, W., Christen, P., McCreath, E., Rendell, A.P.: Dynamic algorithm selection using reinforcement learning. In: International Workshop on Integrating AI and Data Mining, pp. 18–25 (2006)

    Google Scholar 

  3. Arnold, D.V., Beyer, H.-G.: A general noise model and its effects on evolution strategy performance. IEEE Trans. Evol. Comput. 10(4), 380–391 (2006)

    Article  Google Scholar 

  4. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3, 397–422 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino: the adversarial multi-armed bandit problem. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 322–331. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  6. Beyer, H.-G.: The Theory of Evolutions Strategies. Springer, Heidelberg (2001)

    Book  Google Scholar 

  7. Borrett, J., Tsang, E.P.K.: Towards a formal framework for comparing constraint satisfaction problem formulations. Technical report, University of Essex, Department of Computer Science (1996)

    Google Scholar 

  8. Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in multi-armed bandits problems. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 23–37. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Chen, H.: Lower rate of convergence for locating the maximum of a function. Ann. Stat. 16, 1330–1334 (1988)

    Article  MATH  Google Scholar 

  10. Cicirello, V.A., Smith, S.F.: The max k-armed bandit: a new model of exploration applied to search heuristic selection. In: Proceedings of the 20th National Conference on Artificial Intelligence, pp. 1355–1361. AAAI Press (2005)

    Google Scholar 

  11. Conn, A., Scheinberg, K., Toint, P.: Recent progress in unconstrained nonlinear optimization without derivatives. Math. Program. 79(1–3), 397–414 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Fabian, V.: Stochastic approximation of minima with improved asymptotic speed. Ann. Math. Stat. 38, 191–200 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fabian, V.: Stochastic Approximation. SLP. Department of Statistics and Probability, Michigan State University (1971)

    Google Scholar 

  14. Gagliolo, M., Schmidhuber, J.: A neural network model for inter-problem adaptive online time allocation. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 7–12. Springer, Heidelberg (2005)

    Google Scholar 

  15. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47, 295–328 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grigoriadis, M.D., Khachiyan, L.G.: A sublinear-time randomized approximation algorithm for matrix games. Oper. Res. Lett. 18(2), 53–58 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hamadi, Y.: Search: from algorithms to systems. Ph.D. thesis, Université Paris-Sud (2013)

    Google Scholar 

  18. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.: A bayesian approach to tackling hard computational problems. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp. 235–244. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  19. Jebalia, M., Auger, A., Hansen, N.: Log-linear convergence and divergence of the scale-invariant (1+1)-es in noisy environments. Algorithmica, pp. 1–36. Springer, New York (2010)

    Google Scholar 

  20. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments. A survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  21. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Kocsis, L., Szepesvari, C.: Discounted-UCB. In: 2nd Pascal-Challenge Workshop (2006)

    Google Scholar 

  23. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. CoRR, abs/1210.7959 (2012)

    Google Scholar 

  24. Lai, T., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6, 4–22 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nudelman, E., Leyton-Brown, K., H. Hoos, H., Devkar, A., Shoham, Y.: Understanding random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified boolean formulas. Constraints 14(1), 80–116 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 255–260. AAAI (2007)

    Google Scholar 

  28. Sendhoff, B., Beyer, H.-G., Olhofer, M.: The influence of stochastic quality functions on evolutionary search. In: Tan, K., Lim, M., Yao, X., Wang, L. (eds.) Recent Advances in Simulated Evolution and Learning. Advances in Natural Computation, pp. 152–172. World Scientific, New York (2004)

    Chapter  Google Scholar 

  29. Shamir, O.: On the complexity of bandit and derivative-free stochastic convex optimization. CoRR, abs/1209.2388 (2012)

    Google Scholar 

  30. Streeter, M.J., Golovin, D., Smith, S.F.: Restart schedules for ensembles of problem instances. In: AAAI 2007, pp. 1204–1210. AAAI Press (2007)

    Google Scholar 

  31. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  32. Utgoff, P.E.: Perceptron trees: a case study in hybrid concept representations. In: National Conference on Artificial Intelligence, pp. 601–606 (1988)

    Google Scholar 

  33. Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid approach. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 1–10. ACM (2006)

    Google Scholar 

  34. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  35. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-mip: automated algorithm configuration and selection for mixed integer programming. In: RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial Intelligence (IJCAI) (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Teytaud .

Editor information

Editors and Affiliations

Appendix

Appendix

figure a
figure b
figure c

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cauwet, ML., Liu, J., Teytaud, O. (2014). Algorithm Portfolios for Noisy Optimization: Compare Solvers Early. In: Pardalos, P., Resende, M., Vogiatzis, C., Walteros, J. (eds) Learning and Intelligent Optimization. LION 2014. Lecture Notes in Computer Science(), vol 8426. Springer, Cham. https://doi.org/10.1007/978-3-319-09584-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09584-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09583-7

  • Online ISBN: 978-3-319-09584-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics