Skip to main content

Background Measurements and Constraints

  • Chapter
  • First Online:
  • 272 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

With backgrounds accounting for nearly half of the total sample studied, their precise contribution and kinematics must be rigorously verified before a reliable background subtraction can be made. This section presents various measurements and constraints on these processes. As ν μ and CCπ interactions are dominant, particular attention is paid to understanding their contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. D83, 052007 (2011)

    Google Scholar 

  2. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. D81, 013005 (2010)

    Google Scholar 

  3. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. D83, 052009 (2011)

    Google Scholar 

  4. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. D81, 092005 (2010)

    Google Scholar 

  5. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. Lett. 103, 081801 (2009)

    Google Scholar 

  6. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. D82, 092005 (2010)

    Google Scholar 

  7. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Lett. B664, 41 (2008)

    Google Scholar 

  8. M.G. Catanesi et al. [HARP Collaboration], Eur. Phys. J. C52, 29 (2007)

    Google Scholar 

  9. P. Adamson et al. [MINOS Collaboration], Study of muon neutrino disappearance using the Fermilab Main Injector neutrino beam. Phys. Rev. D77, 072002 (2008)

    Google Scholar 

  10. P. Astier et al. [NOMAD Collaboration], Search for ν μ  → ν e oscillations in the NOMAD experiment. Phys. Lett. B570, 19–31 (2003)

    Google Scholar 

  11. P.-A. Amaudruza [T2K ND280 FGD Collaboration], The T2K fine-grained detectors. Nucl. Instrum. Methods A696, 1 (2012)

    Google Scholar 

  12. D.S. Ayres et al. [NOvA Collaboration], The NOvA Technical Design Report. FERMILAB-DESIGN-2007-01 (2007)

    Google Scholar 

  13. V. Barger et al. [LBNE Collaboration], Report of the US long baseline meutrino experiment study. arXiv:0705.4396 (2007)

  14. A. de Bellefon et al. MEMPHYS: a large water Čerenkov detector at Fréjus. arXiv:hep-ex/0607026 (2006)

  15. K. Nakamura, Hyper-Kamiokande - a next generation water Cherenkov detector. Int. J. Mod. Phys. A 18, 4053 (2003)

    Article  ADS  Google Scholar 

  16. P. Huber, T. Schwetz, Phys. Lett. B669, 294 (2008). arXiv:0805.2019

  17. D.D. Stancil et al. [MINERνA Collaboration], Demonstration of communication using neutrinos. Mod. Phys. Lett. A27, 1250077 (2012)

    Google Scholar 

  18. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Measurement of the neutrino component of an anti-neutrino beam observed by a non-magnetized detector. Phys. Rev. D84, 072005 (2011). arxiv:1102.1964

  19. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], First measurement of the muon anti-neutrino double-differential charged current quasi-elastic cross section. Phys. Rev. D88, 032001 (2013)

    Google Scholar 

  20. A. Shinohara et al. Phys. Rev. A53, 130 (1996)

    Article  ADS  Google Scholar 

  21. E.J. Maier, R.M. Edelstein, R.T. Siegel, Phys. Rev. 133, B663 (1964)

    Article  ADS  Google Scholar 

  22. L.Ph. Roesch et al. Phys. Lett. 107B, 31 (1981)

    Article  ADS  Google Scholar 

  23. Yu.G. Budyashov et al. Sov. Phys. JETP 31, 651 (1970)

    ADS  Google Scholar 

  24. M.E. Plett, S.E. Sobottka, Phys. Rev. C3, 1003 (1971)

    ADS  Google Scholar 

  25. B. Macdonald et al. Phys. Rev. 139, B1253 (1965)

    Article  ADS  Google Scholar 

  26. G.H. Miller et al. Phys. Lett 41B, 50 (1972)

    Article  ADS  Google Scholar 

  27. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. D81, 013005 (2010)

    Google Scholar 

  28. A.A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. D82, 092005 (2010)

    Google Scholar 

  29. J. Grange for the MiniBooNE Collaboration, AIP Conf. Proc. 1405, 83 (2011)

    Google Scholar 

  30. See http://root.cern.ch/root/html/TMinuit.html (1995)

  31. B.P. Roe, Nucl. Instrum. Meth. A 570, 159 (2007)

    Article  ADS  Google Scholar 

  32. AA. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. Lett. 103, 061802 (2009)

    Google Scholar 

  33. M. Martini et al. Neutrino and antineutrino quasielastic interactions with nuclei, Phys. Rev. C81, 045502 (2010)

    ADS  Google Scholar 

  34. J. Nieves et al. Inclusive charged-current neutrino-nucleus reactions. Phys. Rev. C83,045501 (2011). arXiv:1102.2777

  35. J. Amaro et al. Meson-exchange currents and quasielastic antineutrino cross sections in the SuperScaling Approximation. arXiv:1112.2123

  36. A. Meucci, C. Giusti, Phys. Rev. D85, 093002 (2012)

    ADS  Google Scholar 

  37. A. Bodek et al. Eur. Phys. J. C71, 1726 (2011)

    Article  ADS  Google Scholar 

  38. M.S. Athar, S. Ahmad, S.K. Singh, Charged current antineutrino reactions from12C at MiniBooNE energies. Phys. Rev. D75, 093003 (2007)

    ADS  Google Scholar 

  39. J.R. Sanford, C.L. Wang, Brookhaven National Laboratory Note 11299 (1967)

    Google Scholar 

  40. M.G. Cox et al. The generalized weighted mean of correlated values. Metrologia 43, S268 (2006)

    Article  ADS  Google Scholar 

  41. J. Nowak, AIP Conf. Proc. 1189, 243 (2009)

    Article  ADS  Google Scholar 

  42. Ch. Berger, L.M. Sehgal, Phys. Rev. D76, 113004 (2007)

    ADS  Google Scholar 

  43. K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Polarization of tau leptons produced in quasielastic neutrino-nucleon scattering. Mod. Phys. Lett. A19, 2919 (2004)

    Article  ADS  Google Scholar 

  44. K.S. Kuzmin, V.V. Lyubushkin, V.A. Naumov, Extended Rein-Sehgal model for tau lepton production. Nucl. Phys. B (Proc. Suppl.) 139, 154 (2005)

    Google Scholar 

  45. K.M. Graczyk, J.T. Sobczyk, Phys. Rev. D77, 053001 (2008)

    ADS  Google Scholar 

  46. A. Bodek et al. J. Phys. Conf. Ser. 110, 082004 (2008)

    Article  ADS  Google Scholar 

  47. V. Bernard et al. J. Phys. G28, R1 (2002)

    Article  ADS  Google Scholar 

  48. D. Schmitz, A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the \(\Delta m^{2} \sim\) 1 eV2 region. Ph.D. thesis, Columbia University, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grange, J. (2015). Background Measurements and Constraints. In: First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross Section. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-09573-8_7

Download citation

Publish with us

Policies and ethics