Skip to main content

Training and Credentialing in Robotic Surgery

  • Chapter
  • First Online:
Essentials of Robotic Surgery

Abstract

Robotic surgery is used throughout various surgical fields such as urology, gynecology, and bariatric surgery. The introduction of surgical robots in some ways follows that of laparoscopy – established and validated training and credentialing of surgeons using the technology is eventually required as the technology grows. Currently laparoscopic surgeons have standardized systems for training and credentialing, and in recent years various systems have been developed in order to aid in the training and accreditation of surgeons on the robotic platform. Simulators, classes, and mentoring are some of the options currently available to surgeons beginning work on the surgical robot, all aimed at preparing surgeons for their first procedures. Many of these training systems and methods have been evaluated and validated through scientific studies. Different groups have proposed varying evaluation methods, and there is currently no single accepted process for testing and assessment of robotic surgical skills. This chapter brings to light current training systems used in robotic surgery as well as issues, tools, and methods involved in the development of standardized robotic surgery credentialing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Satava RM, Gallagher AG, Pellegrini CA. Surgical competence and surgical proficiency: definitions, taxonomy, and metrics. J Am Coll Surg. 2003;196(6):933–7.

    Article  PubMed  Google Scholar 

  2. Allen DP. The teaching of surgery. Trans Am Surg Assoc. 1907;25:1–14.

    Google Scholar 

  3. Mühe E. Laparoskopische cholecystektomie. Endoskopie Heute. 1990;4:262–6.

    Google Scholar 

  4. Semm K. Endoscopic appendectomy. Endoscopy. 1983;15:59–64.

    Article  PubMed  CAS  Google Scholar 

  5. Litynski GS. Kurt Semm and the fight against skepticism: endoscopic hemostasis, laparoscopic appendectomy, and Semm’s impact on the “laparoscopic revolution”. JSLS. 1998;2:309–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Xeroulis G, Dubrowski A, Leslie K. Simulation in laparoscopic surgery: a concurrent validity study for FLS. Surg Endosc. 2009;23:161–5.

    Article  PubMed  Google Scholar 

  7. Kelley WE. Robotic surgery: the promise and early development. Laparoscopy. 2002;1:6–10.

    Google Scholar 

  8. Hanuschik M. The technology of robotic surgery. In: Gharagozloo F, Najam F, editors. Robotic surgery. New York: McGraw Hill; 2009.

    Google Scholar 

  9. Gaba DM. The future vision of simulation in health care. Qual Saf Health Care. 2004;13(1):i2–10.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Issenberg SB, McGaghie WC, Hart IR, et al. Simulation technology for health care professional skills training and assessment. JAMA. 1999;282(9):861–6.

    Article  PubMed  CAS  Google Scholar 

  11. Jonsson MN, Mahmood M, Askerud T, et al. ProMIStm can serve as a da Vinci® simulator – a construct validity study. J Endourol. 2011;25:345–50.

    Google Scholar 

  12. Abboudi H, Khan MS, Aboumarzouk O, Guru KA, Challacombe B, Dasgupta P, Ahmed K. Current status of validation for robotic surgery simulators – a systematic review. BJU Int. 2013;111(2):194–205.

    Article  PubMed  Google Scholar 

  13. Intuitive Surgical. Da Vinci skills simulator. 2014. Available at: http://www.intuitivesurgical.com/products/skills_simulator/. Accessed Jan 2014.

  14. Wass V, Van der Vleuten C, Shatzer J, Jones R. Assessment of clinical competence. Lancet. 2001;357:945–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hung AJ, Zehnder P, Patil MB, et al. Face, content and construct validity of a novel robotic surgery simulator. J Urol. 2011;186:1019–24.

    Article  PubMed  Google Scholar 

  16. Kelly DC, Margules AC, Kundavaram CR, et al. Face, content, and construct validation of the da vinci skills simulator. Urology. 2012;79:1068–72.

    Article  PubMed  Google Scholar 

  17. Mimic. dV-Trainer®. 2014. Available at: http://www.mimicsimulation.com/products/dv-trainer/. Accessed Jan 2014.

  18. Lendvay TS, Casale P, Sweet R, Peters C. VR robotic surgery: randomized blinded study of the dV Trainer robotic simulator. Stud Health Technol Inform. 2008;132:242–4.

    PubMed  Google Scholar 

  19. Sethi AS, Peine WJ, Mohammadi Y, Sundaram CP. Validation of a novel virtual reality robotic simulator. J Endourol. 2009;23:503–8.

    Article  PubMed  Google Scholar 

  20. Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73:1288–92.

    Article  PubMed  Google Scholar 

  21. Korets R, Mues AC, Graversen JA, et al. Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology. 2011;78(6):1326–30.

    Article  PubMed  Google Scholar 

  22. Simulated Surgical Systems. Robotic surgical simulator. 2014. Available at: http://www.simulatedsurgicals.com/what-is-ross.htm. Accessed Jan 2014.

  23. Seixas-Mikelus SA, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding GE, Guru KA. Face validation of a novel robotic surgical simulator. Urology. 2010;76:357–60.

    Article  PubMed  Google Scholar 

  24. Seixas-Mikelus SA, Stegemann AP, Kesavadas T, et al. Content validation of a novel robotic surgical simulator. BJU Int. 2011;107:1130–5.

    Article  PubMed  Google Scholar 

  25. Kesavadas T, Kumar A, Srimathveeravalli G et al. Efficacy of Robotic Surgery Simulator (RoSS) for the da Vinci® Surgical System. J Urol 2009; 181 (Suppl.): 823.

    Google Scholar 

  26. SimSurgery. SEP Robot®. 2014. Available at: http://www.simsurgery.com/robot.html. Accessed Jan 2014.

  27. Gavazzi A, Bahsoun AN, Van Haute W, et al. Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP Robot). Ann R Coll Surg Engl. 2011;93:146–50.

    Article  Google Scholar 

  28. McDonough P, Peterson A, Brand T. Initial validation of the ProMIS surgical simulator as an objective measure of robotic task performance. J Urol 2010; 183 (Suppl.): e515.

    Google Scholar 

  29. Ahmed K, Jawad M, Abboudi M, et al. Effectiveness of procedural simulation in urology: a systematic review. J Urol. 2011;186:26–34.

    Article  PubMed  Google Scholar 

  30. Intuitive Surgical. Training Pathway. 2014. Available at: http://www.intuitivesurgical.com/training/training_pathway.html. Accessed Jan 2014.

  31. Patel VR. Essential elements to the establishment and design of a successful robotic surgery programme. Int J Med Robot. 2006;2:28.

    Article  PubMed  Google Scholar 

  32. Chitwood Jr RC, Nifong W, Chapman WHH, et al. Robotic surgical training in an academic institution. Ann Surg. 2001;234:475.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rocco B, Lorusso A, Coelho RF, et al. Building a robotic program. Scan J Surg. 2009;98:72.

    CAS  Google Scholar 

  34. Schachner T, Bonaros N, Wiedemann D, et al. Training surgeons to perform robotically assisted totally endoscopic coronary surgery. Ann Thorac Surg. 2009;88:523.

    Article  PubMed  Google Scholar 

  35. Mirheydar H, Jones M, Koeneman K, et al. Robotic surgical education: a collaborative approach to training postgraduate urologists and endourology fellows. JSLS. 2009;13:287.

    PubMed  PubMed Central  Google Scholar 

  36. Guzzo TJ, Gonzalgo ML. Robotic surgical training of the urologic oncologist. Urol Oncol. 2009;27:214.

    Article  PubMed  Google Scholar 

  37. Schroeck FR, Palha de Sousa CA, Kalman RA, et al. Trainees do not negatively impact the institutional learning curve for robotic prostatectomy as characterized by operative time, estimated blood loss, and positive surgical margin rate. Urology. 2008;71:597.

    Article  PubMed  Google Scholar 

  38. Ali MR, Rasmussen J, BhaskerRao B. Teaching robotic surgery: a stepwise approach. Surg Endosc. 2007;21:912.

    Article  PubMed  Google Scholar 

  39. Jamshidi R, LaMasters T, Eisenberg D, et al. Video self-assessment augments development of videoscopic suturing skill. J Am Coll Surg. 2009;209:622.

    Article  PubMed  Google Scholar 

  40. Hanly EJ, Miller BE, Kumar R, et al. Mentoring console improves collaboration and teaching in surgical robotics. J Laparoendosc Adv Surg Tech A. 2006;16:445–51.

    Article  PubMed  Google Scholar 

  41. Marengo F, Larrain D, Babilonti L, et al. Learning experience using the double-console da Vinci surgical system in gynecology: a prospective cohort study in a university hospital. Arch Gynecol Obstet. 2012;285:441–5.

    Article  PubMed  Google Scholar 

  42. Peters JH, Fried GM, Swanstrom LL, et al. Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery. 2004;135:21.

    Article  PubMed  Google Scholar 

  43. Society of American Gastrointestinal and Endoscopic Surgeons. A Consensus Document on Robotic Surgery. 2014. Available at: http://www.sages.org/publications/guidelines/consensus-document-robotic-surgery/. Accessed Jan 2014.

  44. Ahlering TE, Skarecky D, Lee D, et al. Successful transfer of open surgical skills to a laparoscopic environment using a robotic interface: initial experience with laparoscopic radical prostatectomy. J Urol. 2003;170:1738.

    Article  PubMed  Google Scholar 

  45. Herrell SD, Smith Jr JA. Robotic-assisted laparoscopic prostatectomy: what is the learning curve? Urology. 2005;66:105.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Rogula M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rogula, T., Acquafresca, P.A., Bazan, M. (2015). Training and Credentialing in Robotic Surgery. In: Kroh, M., Chalikonda, S. (eds) Essentials of Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-09564-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09564-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09563-9

  • Online ISBN: 978-3-319-09564-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics