Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 477 Accesses

Abstract

To follow the folding process of the protein, single-molecule burst experiments on CTPR31C-Alexa molecules were performed. Protein molecules were set to diffuse through the focus of the confocal microscope. Bursts of emitting photons from donor and acceptor fluorophores were registered by two avalanche photo diodes (APDs). Signal detection was performed using photon counting instrumentation (PicoHarp, PicoQuant). A running-average of 15 photons was first used to smooth the photon trajectory. Photons arriving at any of the detectors with a time difference smaller than 50 µs were considered as belonging to the same fluorescent burst. Bursts with more than 35 photons per burst were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schultz PG et al (2000) Single-molecule protein folding: Diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci USA 97(10):5179–5184

    Article  Google Scholar 

  2. Gopich IV, Szabo A (2010) FRET efficiency distributions of multistate single molecules. J Phys Chem B 114(46):15221–15226

    Article  CAS  Google Scholar 

  3. Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. W.H. Freeman, New York. xxi, p 631

    Google Scholar 

  4. Kalinin S et al (2010) On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. J Phys Chem B 114(18):6197–6206

    Article  CAS  Google Scholar 

  5. Hagen SJ et al (1996) Diffusion-limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding. Proc Natl Acad Sci USA 93(21):11615–11617

    Article  CAS  Google Scholar 

  6. Pirchi M et al (2011) Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein. Nat Commun 2:493

    Article  Google Scholar 

  7. Javadi Y, Main ER (2009) Exploring the folding energy landscape of a series of designed consensus tetratricopeptide repeat proteins. Proc Natl Acad Sci USA 106(41):17383–17388

    Article  CAS  Google Scholar 

  8. Wahl M et al (2003) Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt Express 11(26):3583–3591

    Article  Google Scholar 

  9. Torres T, Levitus M (2007) Measuring conformational dynamics: a new FCS-FRET approach. J Phys Chem B 111(25):7392–7400

    Article  CAS  Google Scholar 

  10. Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–297

    Article  CAS  Google Scholar 

  11. Price ES, DeVore MS, Johnson CK (2010) Detecting intramolecular dynamics and multiple Forster resonance energy transfer states by fluorescence correlation spectroscopy. J Phys Chem B 114(17):5895–5902

    Article  CAS  Google Scholar 

  12. Lakowicz JR (1999) Principles of fluorescence spectroscopy. 2nd edn, Kluwer Academic/Plenum., New York. xxiii, p 698

    Google Scholar 

  13. Haas E, Katchalski-Katzir E, Steinberg IZ (1978) Effect of the orientation of donor and acceptor on the probability of energy transfer involving electronic transitions of mixed polarization. Biochemistry 17(23):5064–5070

    Article  CAS  Google Scholar 

  14. Gould H, Tobochnik J (1996) An introduction to computer simulation methods. 2nd edn, Addison Wesley Publishing Company, Boston

    Google Scholar 

  15. Kohn JE et al (2004) Random-coil behavior and the dimensions of chemically unfolded proteins. Proc Natl Acad Sci USA 101(34):12491–12496

    Article  CAS  Google Scholar 

  16. Sherman E, Haran G (2006) Coil-globule transition in the denatured state of a small protein. Proc Natl Acad Sci USA 103(31):11539–11543

    Article  CAS  Google Scholar 

  17. Main ER et al (2005) Local and long-range stability in tandemly arrayed tetratricopeptide repeats. Proc Natl Acad Sci USA 102(16):5721–5726

    Article  CAS  Google Scholar 

  18. Cortajarena AL, Mochrie SG, Regan L (2008) Mapping the energy landscape of repeat proteins using NMR-detected hydrogen exchange. J Mol Biol 379(3):617–626

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharona Cohen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cohen, S. (2016). Results. In: Single-Molecule Fluorescence Spectroscopy of the Folding of a Repeat Protein. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-09558-5_3

Download citation

Publish with us

Policies and ethics