Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 537 Accesses

Abstract

We carry out a series of numerical simulations of viscous accretion flows having a reasonable spatial distribution of the viscosity parameter. We add the power-law cooling throughout the flow. We show that in agreement with the theoretical solutions of viscous transonic flows, matter having viscosity parameter above a critical value becomes a Keplerian disc while matter having lesser viscosity remains a low angular momentum, sub-Keplerian flow. The latter component produces centrifugal pressure supported shock waves. Thus, for instance, flows having sufficiently high viscosity on the equatorial plane and low viscosity above and below, produce a Two Component Advective Flow (TCAF), where a Keplerian disc is surrounded by a rapidly moving sub-Keplerian halo. We find that the post-shock region of the Keplerian disc is evaporated and the configuration is stable. This agrees with the theoretical models which attempt to explain the spectral and timing properties of black hole candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cannizzo, J. K., Ghosh, P., & Wheeler, J. C. (1982). Astrophysical Journal, 260, 83.

    Article  ADS  Google Scholar 

  • Cannizzo, J. K., Chen, W., & Livio, M. (1995). Astrophysical Journal, 454, 880.

    Article  ADS  Google Scholar 

  • Chakrabarti, S. K. (1989). Astrophysical Journal, 347, 365 (C89).

    Google Scholar 

  • Chakrabarti, S. K. (1990a). Theory of transonic astrophysical flows. Singapore: World Scientific (C90a).

    Google Scholar 

  • Chakrabarti, S. K. (1990b). MNRAS, 243, 610 (C90b).

    Google Scholar 

  • Chakrabarti, S. K. (1996). Physics Reports, 266, 229 (C96).

    Google Scholar 

  • Chakrabarti, S. K., & Das, S. (2001). MNRAS, 327, 808 (CD01).

    Google Scholar 

  • Chakrabarti, S. K., & Titarchuk, L. G. (1995). Astrophysical Journal, 455, 623 (CT95).

    Google Scholar 

  • Chakrabarti, S. K., Dutta, B. G., & Pal, P. S. (2009). MNRAS, 394, 1463.

    Google Scholar 

  • Debnath, D., Chakrabarti, S. K., & Nandi, A. (2010). Astronomy and Astrophysics, 520, 98.

    Article  ADS  Google Scholar 

  • Garain, S., Ghosh, H., & Chakrabarti, S. K. (2012). Astrophysical Journal, 758, 114.

    Article  ADS  Google Scholar 

  • Giri, K., & Chakrabarti S. K. (2013). MNRAS, 430, 2836 (GC13).

    Google Scholar 

  • Haardt, F., Maraschi, L., & Ghisellini, G. (1994). Astrophysical Journal, 432, 95.

    Article  ADS  Google Scholar 

  • Igumenshchev, I. V., & Abramowicz, M. A. (1999). MNRAS, 303, 309.

    Article  ADS  Google Scholar 

  • Igumenshchev, I. V., & Abramowicz, M. A. (2000). Astrophysical Journal, 130, 463.

    Article  ADS  Google Scholar 

  • Mandal, S., & Chakrabarti, S. K. (2010). Astrophysical Journal, 710, 147.

    Article  ADS  Google Scholar 

  • Proga, D., & Begelman, M. C. (2003). Astrophysical Journal, 69, 81.

    Google Scholar 

  • Rao, A. R., Yadav, J. S., & Paul, B. (2000). Astrophysical Journal, 544, 443.

    Article  ADS  Google Scholar 

  • Shakura, N. I., & Sunyaev, R. A. (1973). Astronomy and Astrophysics, 24, 337 (SS73).

    Google Scholar 

  • Smith, D. M., Dawson, D. M., & Swank J. H. (2007). Astrophysical Journal, 669, 1138.

    Google Scholar 

  • Smith, D. M., Heindl, W. A., & Swank J. H. (2001a). AAS, 33, 1473.

    Google Scholar 

  • Smith, D. M., Heindl, W. A., & Swank J. H. (2002). Astrophysical Journal, 569, 362.

    Google Scholar 

  • Smith, D. M., Heindl, W. A., Markwardt, C., & Swank, J. H. (2001b). Astrophysical Journal, 554, L41.

    Article  ADS  Google Scholar 

  • Stone, J. M., Pringle, J. E., & Begelman, M. C. (1999). MNRAS, 310, 1002.

    Article  ADS  Google Scholar 

  • Sunyaev, R. A., & Truemper, J. (1979). Nature, 279, 506.

    Article  ADS  Google Scholar 

  • Sunyaev, R. A., & Titarchuk, L. G. (1980). Astronomy and Astrophysics, 86, 121.

    ADS  Google Scholar 

  • Sunyaev, R. A., & Titarchuk, L. G. (1985). Astronomy and Astrophysics, 143, 374S.

    ADS  Google Scholar 

  • Wu, K., Soria, R., Campbell-Wilson, D., Hannikainen, D., Harmon, B. A., Hunstead, R., et al. (2002). Astrophysical Journal, 565, 1161.

    Article  ADS  Google Scholar 

  • Zdziarski, A. (1988). MNRAS, 233, 739.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinsuk Giri .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giri, K. (2015). Effects of Power-Law Cooling in Viscous Flows. In: Numerical Simulation of Viscous Shocked Accretion Flows Around Black Holes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-09540-0_7

Download citation

Publish with us

Policies and ethics