Skip to main content

Influence of Dietary Constituents on Motor and Non-motor Symptoms in Parkinson’s Disease

  • Chapter
  • First Online:
Neuropsychiatric Symptoms of Movement Disorders

Abstract

Despite intensive research during the last decades, the actual trigger for the degeneration of dopaminergic and other neurotransmitter systems in Parkinson’s disease (PD) still remains to be identified. Numerous epidemiological studies have suggested that nutrition may play an important role in the pathogenesis of PD and influence the risk to develop the disease, which is supported by recent research in animal models indicating that ascending alpha-synuclein pathology in the central nervous system may originate from the enteric nervous system. In contrast, there have been only very few clinical studies investigating whether symptoms of PD can also be ameliorated by nutritional components after the onset of disease. Physicians will consequently find it hard to make dietary recommendations to their PD patients, which are not purely based on beliefs rather than on scientific evidence. This chapter aims to summarize the limited data from clinical trials investigating the effects of dietary constituents on motor and non-motor symptoms of PD. After promising results in cell cultures and animal models of PD, food components such as antioxidants, methylxanthines, polyphenols, unsaturated fatty acids, and vitamins have been repeatedly suggested to have symptomatic or even disease-modifying effects in PD. However, scientific evidence from clinical trials for a beneficial influence of these nutritional components in PD is still limited and often inconclusive, which in some studies may have been the consequence of inadequate sample sizes and treatment lengths and hence lack of statistical power to detect potentially mild effects of dietary factors on disease outcomes. Instead of aiming to investigate symptomatic effects of single dietary components, future studies should also consider to examine combinations of constituents with different mechanisms of action since this approach may be more fruitful in a disease with multiple underlying pathomechanisms and relatively slow progression. Given the low cost and good tolerability of dietary components, investigations of the interplay between nutrition and PD remain a very interesting topic and should be pursued further in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Lau LM, Giesbergen PC, de Rijk MC, et al. Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Neurology. 2004;63(7):1240–4.

    Article  PubMed  Google Scholar 

  2. Driver JA, Logroscino G, Gaziano JM, et al. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology. 2009;72(5):432–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med. 1998;339(15):1044–53.

    Article  PubMed  CAS  Google Scholar 

  4. Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci. 1999;22:123–44.

    Article  PubMed  CAS  Google Scholar 

  5. Löhle M, Reichmann H. Clinical neuroprotection in Parkinson’s disease – still waiting for the breakthrough. J Neurol Sci. 2010;289(1–2):104–14.

    Article  PubMed  Google Scholar 

  6. Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 2012;72(6):893–901.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Nielsen SS, Franklin GM, Longstreth WT, et al. Nicotine from edible Solanaceae and risk of Parkinson disease. Ann Neurol. 2013;74(3):472–7.

    PubMed  CAS  Google Scholar 

  8. Pan-Montojo F, Anichtchik O, Dening Y, et al. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One. 2010;5(1):e8762.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shults CW. Therapeutic role of coenzyme Q(10) in Parkinson’s disease. Pharmacol Ther. 2005;107(1):120–30.

    Article  PubMed  CAS  Google Scholar 

  10. Strijks E, Kremer HP, Horstink MW. Q10 therapy in patients with idiopathic Parkinson’s disease. Mol Asp Med. 1997;18(Suppl):S237–40.

    Article  CAS  Google Scholar 

  11. Muller T, Buttner T, Gholipour AF, et al. Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease. Neurosci Lett. 2003;341(3):201–4.

    Article  PubMed  CAS  Google Scholar 

  12. Storch A, Jost WH, Vieregge P, et al. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch Neurol. 2007;64(7):938–44.

    Article  PubMed  Google Scholar 

  13. NINDS NET-PD Investigators. A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson disease. Neurology. 2007;68(1):20–8.

    Article  Google Scholar 

  14. The Parkinson Study Group Q. E. Investigators, Beal MF, Oakes D, et al. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol. 2014;71(5):543–52.

    Article  PubMed  Google Scholar 

  15. Bender A, Koch W, Elstner M, et al. Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology. 2006;67(7):1262–4.

    Article  PubMed  CAS  Google Scholar 

  16. Elm JJ, NINDS NET-PD Investigators. Design innovations and baseline findings in a long-term Parkinson’s trial: the National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson’s Disease Long-Term Study-1. Mov Disord. 2012;27(12):1513–21.

    Article  PubMed  CAS  Google Scholar 

  17. National Institute of Neurological Disorders and Stroke. Statement on the Termination of NET-PD LS-1 Study. 2013 [11 Sept 2013]. Available from: http://www.ninds.nih.gov/news_and_events/news_articles/pressrelease_NET-PD_LS-1_study_termination_09112013.htm.

  18. Postuma RB, Lang AE, Munhoz RP, et al. Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology. 2012;79(7):651–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Katzenschlager R, Evans A, Manson A, et al. Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry. 2004;75(12):1672–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Wolz M, Schleiffer C, Klingelhofer L, et al. Comparison of chocolate to cacao-free white chocolate in Parkinson’s disease: a single-dose, investigator-blinded, placebo-controlled, crossover trial. J Neurol. 2012;259(11):2447–51.

    Article  PubMed  CAS  Google Scholar 

  21. The Michael J. Fox Foundation. Parkinson’s funded grant: ability to slow disease progression and safety and tolerability of green tea polyphenols in early Parkinson’s disease. Available from: http://www.michaeljfox.org/foundation/grant-detail.php?grant_id=187.

  22. da Silva TM, Munhoz RP, Alvarez C, et al. Depression in Parkinson’s disease: a double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. J Affect Disord. 2008;111(2–3):351–9.

    Article  PubMed  Google Scholar 

  23. Suzuki M, Yoshioka M, Hashimoto M, et al. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutr. 2013;97(5):1004–13.

    Article  PubMed  CAS  Google Scholar 

  24. Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med. 1993;328(3):176–83.

    Article  Google Scholar 

  25. Matthews RT, Ferrante RJ, Klivenyi P, et al. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol. 1999;157(1):142–9.

    Article  PubMed  CAS  Google Scholar 

  26. NINDS NET-PD Investigators. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology. 2006;66(5):664–71.

    Article  Google Scholar 

  27. Lyoo IK, Yoon S, Kim TS, et al. A randomized, double-blind placebo-controlled trial of oral creatine monohydrate augmentation for enhanced response to a selective serotonin reuptake inhibitor in women with major depressive disorder. Am J Psychiatry. 2012;169(9):937–45.

    Article  PubMed  Google Scholar 

  28. Hernan MA, Takkouche B, Caamano-Isorna F, et al. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol. 2002;52(3):276–84.

    Article  PubMed  Google Scholar 

  29. Chen JF, Xu K, Petzer JP, et al. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci. 2001;21(10):RC143.

    PubMed  CAS  Google Scholar 

  30. Svenningsson P, Le Moine C, Fisone G, et al. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol. 1999;59(4):355–96.

    Article  PubMed  CAS  Google Scholar 

  31. Benarroch EE. Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology. 2008;70(3):231–6.

    Article  PubMed  Google Scholar 

  32. Fredholm BB, Svenningsson P. Adenosine-dopamine interactions: development of a concept and some comments on therapeutic possibilities. Neurology. 2003;61(11 Suppl 6):S5–9.

    Article  PubMed  CAS  Google Scholar 

  33. Kartzinel R, Shoulson I, Calne DB. Studies with bromocriptine: III. Concomitant administration of caffeine to patients with idiopathic parkinsonism. Neurology. 1976;26(8):741–3.

    Article  PubMed  CAS  Google Scholar 

  34. Shoulson I, Chase T. Caffeine and the antiparkinsonian response to levodopa or piribedil. Neurology. 1975;25(8):722–4.

    Article  PubMed  CAS  Google Scholar 

  35. Manyam BV. Paralysis agitans and levodopa in “Ayurveda”: ancient Indian medical treatise. Mov Disord. 1990;5(1):47–8.

    Article  PubMed  CAS  Google Scholar 

  36. Vaidya AB, Rajagopalan TG, Mankodi NA, et al. Treatment of Parkinson’s disease with the cowhage plant-Mucuna pruriens Bak. Neurol India. 1978;26(4):171–6.

    PubMed  CAS  Google Scholar 

  37. HP-200 in Parkinson’s Disease Study Group. An alternative medicine treatment for Parkinson’s disease: results of a multicenter clinical trial. J Altern Complement Med. 1995;1(3):249–55.

    Article  Google Scholar 

  38. Nagashayana N, Sankarankutty P, Nampoothiri MR, et al. Association of L-DOPA with recovery following Ayurveda medication in Parkinson’s disease. J Neurol Sci. 2000;176(2):124–7.

    Article  PubMed  CAS  Google Scholar 

  39. Dyck LE. Release of monoamines from striatal slices by phenelzine and beta-phenylethylamine. Prog Neuropsychopharmacol Biol Psychiatry. 1983;7(4–6):797–800.

    Article  PubMed  CAS  Google Scholar 

  40. McQuade PS, Wood PL. The effects of beta-phenylethylamine on tyramine and dopamine metabolism. Prog Neuropsychopharmacol Biol Psychiatry. 1983;7(4–6):755–9.

    Article  PubMed  CAS  Google Scholar 

  41. Buijsse B, Feskens EJ, Kok FJ, et al. Cocoa intake, blood pressure, and cardiovascular mortality: the Zutphen elderly study. Arch Intern Med. 2006;166(4):411–7.

    PubMed  Google Scholar 

  42. Buijsse B, Weikert C, Drogan D, et al. Chocolate consumption in relation to blood pressure and risk of cardiovascular disease in German adults. Eur Heart J. 2010;31(13):1616–23.

    Article  PubMed  CAS  Google Scholar 

  43. Larsson SC, Virtamo J, Wolk A. Chocolate consumption and risk of stroke: a prospective cohort of men and meta-analysis. Neurology. 2012;79(12):1223–9.

    Article  PubMed  CAS  Google Scholar 

  44. Wolz M, Kaminsky A, Lohle M, et al. Chocolate consumption is increased in Parkinson’s disease. Results from a self-questionnaire study. J Neurol. 2009;256(3):488–92.

    Article  PubMed  CAS  Google Scholar 

  45. D’Archivio M, Filesi C, Vari R, et al. Bioavailability of the polyphenols: status and controversies. Int J Mol Sci. 2010;11(4):1321–42.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Urquiaga I, Leighton F. Plant polyphenol antioxidants and oxidative stress. Biol Res. 2000;33(2):55–64.

    Article  PubMed  CAS  Google Scholar 

  47. Hu G, Bidel S, Jousilahti P, et al. Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord. 2007;22(15):2242–8.

    Article  PubMed  Google Scholar 

  48. Tanaka K, Miyake Y, Fukushima W, et al. Intake of Japanese and Chinese teas reduces risk of Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(6):446–50.

    Article  PubMed  Google Scholar 

  49. Checkoway H, Powers K, Smith-Weller T, et al. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol. 2002;155(8):732–8.

    Article  PubMed  Google Scholar 

  50. Tan EK, Tan C, Fook-Chong SM, et al. Dose-dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci. 2003;216(1):163–7.

    Article  PubMed  Google Scholar 

  51. Weinreb O, Mandel S, Amit T, et al. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem. 2004;15(9):506–16.

    Article  PubMed  CAS  Google Scholar 

  52. Levites Y, Weinreb O, Maor G, et al. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78(5):1073–82.

    Article  PubMed  CAS  Google Scholar 

  53. Mandel SA, Amit T, Kalfon L, et al. Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins. J Nutr. 2008;138(8):1578S–83.

    PubMed  CAS  Google Scholar 

  54. Kandinov B, Giladi N, Korczyn AD. The effect of cigarette smoking, tea, and coffee consumption on the progression of Parkinson’s disease. Parkinsonism Relat Disord. 2007;13(4):243–5.

    Article  PubMed  Google Scholar 

  55. Bousquet M, Calon F, Cicchetti F. Impact of omega-3 fatty acids in Parkinson’s disease. Ageing Res Rev. 2011;10(4):453–63.

    Article  PubMed  CAS  Google Scholar 

  56. Brenna JT, Salem Jr N, Sinclair AJ, et al. alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids. 2009;80(2-3):85–91.

    Article  PubMed  CAS  Google Scholar 

  57. de Lau LM, Bornebroek M, Witteman JC, et al. Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology. 2005;64(12):2040–5.

    Article  PubMed  Google Scholar 

  58. Gao X, Chen H, Fung TT, et al. Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr. 2007;86(5):1486–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Alcalay RN, Gu Y, Mejia-Santana H, et al. The association between Mediterranean diet adherence and Parkinson’s disease. Mov Disord. 2012;27(6):771–4.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bousquet M, Saint-Pierre M, Julien C, et al. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J: Off Pub Fed Am Soc Exp Biol. 2008;22(4):1213–25.

    Article  CAS  Google Scholar 

  61. Cansev M, Ulus IH, Wang L, et al. Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson’s disease. Neurosci Res. 2008;62(3):206–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Samadi P, Gregoire L, Rouillard C, et al. Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann Neurol. 2006;59(2):282–8.

    Article  PubMed  CAS  Google Scholar 

  63. Chowdhury R, Stevens S, Gorman D, et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ. 2012;345:e6698.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fahn S. A pilot trial of high-dose alpha-tocopherol and ascorbate in early Parkinson’s disease. Ann Neurol. 1992;32(Suppl):S128–32.

    Article  PubMed  Google Scholar 

  65. Logroscino G, Marder K, Cote L, et al. Dietary lipids and antioxidants in Parkinson’s disease: a population-based, case-control study. Ann Neurol. 1996;39(1):89–94.

    Article  PubMed  CAS  Google Scholar 

  66. Scheider WL, Hershey LA, Vena JE, et al. Dietary antioxidants and other dietary factors in the etiology of Parkinson’s disease. Mov Disord. 1997;12(2):190–6.

    Article  PubMed  CAS  Google Scholar 

  67. Hellenbrand W, Boeing H, Robra BP, et al. Diet and Parkinson’s disease. II: a possible role for the past intake of specific nutrients. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology. 1996;47(3):644–50.

    Article  PubMed  CAS  Google Scholar 

  68. Zhang SM, Hernan MA, Chen H, et al. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology. 2002;59(8):1161–9.

    Article  PubMed  CAS  Google Scholar 

  69. de Rijk MC, Breteler MM, den Breeijen JH, et al. Dietary antioxidants and Parkinson disease. The Rotterdam study. Arch Neurol. 1997;54(6):762–5.

    Article  PubMed  Google Scholar 

  70. Golbe LI, Farrell TM, Davis PH. Case-control study of early life dietary factors in Parkinson’s disease. Arch Neurol. 1988;45(12):1350–3.

    Article  PubMed  CAS  Google Scholar 

  71. Golbe LI, Farrell TM, Davis PH. Follow-up study of early-life protective and risk factors in Parkinson’s disease. Mov Disord. 1990;5(1):66–70.

    Article  PubMed  CAS  Google Scholar 

  72. Martin A, Youdim K, Szprengiel A, et al. Roles of vitamins E and C on neurodegenerative diseases and cognitive performance. Nutr Rev. 2002;60(10 Pt 1):308–26.

    Article  PubMed  Google Scholar 

  73. Evatt ML, Delong MR, Khazai N, et al. Prevalence of vitamin d insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol. 2008;65(10):1348–52.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Evatt ML, DeLong MR, Kumari M, et al. High prevalence of hypovitaminosis D status in patients with early Parkinson disease. Arch Neurol. 2011;68(3):314–9.

    Article  PubMed  Google Scholar 

  75. Ding H, Dhima K, Lockhart KC, et al. Unrecognized vitamin D3 deficiency is common in Parkinson disease: Harvard biomarker study. Neurology. 2013;81(17):1531–7.

    Article  PubMed  CAS  Google Scholar 

  76. Peterson AL, Murchison C, Zabetian C, et al. Memory, mood, and vitamin d in persons with Parkinson’s disease. J Park Dis. 2013;3(4):547–55.

    CAS  Google Scholar 

  77. Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2011;59(12):2291–300.

    Article  PubMed  Google Scholar 

  78. van den Bos F, Speelman AD, Samson M, et al. Parkinson’s disease and osteoporosis. Age Ageing. 2013;42(2):156–62.

    Article  PubMed  Google Scholar 

  79. Cole MH, Silburn PA, Wood JM, et al. Falls in Parkinson’s disease: kinematic evidence for impaired head and trunk control. Mov Disord. 2010;25(14):2369–78.

    Article  PubMed  Google Scholar 

Download references

Conflicts of Interest

Matthias Löhle was supported by a seed grant of the Center for Regenerative Therapies Dresden (CRTD) and received honoraria for presentations from Boehringer Ingelheim, GlaxoSmithKline, MEDA Pharma, and UCB Pharma. Heinz Reichmann was acting on advisory boards and gave lectures and received research grants from Abbott, AbbVie, Bayer Health Care, Boehringer Ingelheim, Britannia, Cephalon, Desitin, GSK, Lundbeck, Medtronic, Merck Serono, Novartis, Orion, Pfizer, TEVA, UCB Pharma, and Valeant. No funding was provided for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Löhle MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Löhle, M., Reichmann, H. (2015). Influence of Dietary Constituents on Motor and Non-motor Symptoms in Parkinson’s Disease. In: Reichmann, H. (eds) Neuropsychiatric Symptoms of Movement Disorders. Neuropsychiatric Symptoms of Neurological Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-09537-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09537-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09536-3

  • Online ISBN: 978-3-319-09537-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics