Skip to main content

A Recurrence-Based Approach for Feature Extraction in Brain-Computer Interface Systems

  • Conference paper
  • First Online:
Book cover Translational Recurrences

Abstract

The feature extraction stage is one of the main tasks underlying pattern recognition, and, is particularly important for designing Brain-Computer Interfaces (BCIs), i.e. structures capable of mapping brain signals in commands for external devices. Within one of the most used BCIs paradigms, that based on Steady State Visual Evoked Potentials (SSVEP), such task is classically performed in the spectral domain, albeit it does not necessarily provide the best achievable performance. The aim of this work is to use recurrence-based measures in an attempt to improve the classification performance obtained with a classical spectral approaches for a five-command SSVEP-BCI system. For both recurrence and spectral spaces, features were selected using a cluster measure defined by the Davies-Bouldin index and the classification stage was based on linear discriminant analysis. As the main result, it was found that the threshold \(\varepsilon \) of the recurrence plot, chosen so as to yield a recurrence rate of 2.5 %, defined the key discriminant feature, typically providing a mean classification error of less than 2 % when information from 4 electrodes was used. Such classification performance was significantly better than that attained using spectral features, which strongly indicates that RQA is an efficient feature extraction technique for BCI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.gtec.at/Products/Hardware-and-Accessories/g.USBamp-Specs-Features.

  2. 2.

    http://www.schalklab.org/research/bci2000.

References

  1. Wolpaw, J., Wolpaw, E.W.: Brain-Computer Interfacing: Principles and Practice. Oxford University Press, New York (2012)

    Google Scholar 

  2. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). doi:10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  3. Millán, J.R., Rupp, R., Mueller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kubler, A., Leeb, R., Neuper, C., Mueller, K.R., Mattia, D.: Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4(161), 1–15 (2010). doi:10.3389/fnins.2010.00161

    Google Scholar 

  4. Sobani, Z.A., Quadri, S.A., Enam, S.A.: Stem cells for spinal cord regeneration: current status. Surg. Neurol. Int. 1(1), 93 (2010). doi:10.4103/2152-7806.74240

    Article  Google Scholar 

  5. Zhu, D., Bieger, J., Garcia Molina, G., Aarts, R.M.: A survey of stimulation methods used in SSVEP-based BCIs. In: Computational Intelligence and Neuroscience 2010, 702,357 (2010). doi:10.1155/2010/702357

  6. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007). doi:10.1016/j.physrep.2006.11.001

    Article  MathSciNet  Google Scholar 

  7. Marwan, N.: How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcat. Chaos 21(4), 1003–1017 (2011). doi:10.1142/S0218127411029008

    Article  MATH  MathSciNet  Google Scholar 

  8. Zbilut, J.P., Zaldívar-Comenges, J.M., Strozzi, F.: Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data. Phys. Lett. A 297(3–4), 173–181 (2002). doi:10.1016/S0375-9601(02)00436-X

    Article  MATH  Google Scholar 

  9. Soriano, D.C., Suyama, R., Ando, R.A., Attux, R., Duarte, L.T.: Blind source separation in the context of deterministic signals. In: Eisencraft, M., Suyama, R., Attux, R. (eds.) Chaotic Signals in Digital Communications, pp. 325–348. CRC Press, Boca Raton (2013). doi:10.1201/b15473-13

    Google Scholar 

  10. Semmlow, J.: Signals and Systems for Bioengineers, 2nd edn. Academic Press, Amsterdam (2011)

    Google Scholar 

  11. Stoica, P., Moses, R.L.: Introduction to Spectral Analysis, Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  12. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–1(2), 224–227 (1979). doi:10.1109/TPAMI.1979.4766909.

    Article  Google Scholar 

  13. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 2nd edn. Academic Press, New York (1999)

    Google Scholar 

  14. Perez, J.L.M., Cruz, A.B.: Linear discriminant analysis on brain computer interface. In: IEEE International Symposium on Intelligent Signal Processing, 2007. WISP 2007, pp. 1–6 (2007). doi:10.1109/WISP.2007.4447590

  15. Prichard, D., Theiler, J.: Generalized redundancies for time series analysis. Phys. D 84(3–4), 476–493 (1995). doi:10.1016/0167-2789(95)00041-2

    Article  Google Scholar 

  16. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D 9(1–2), 189–208 (1983). doi:10.1016/0167-2789(83)90298-1

    Article  MATH  MathSciNet  Google Scholar 

  17. Acharya, R., Faust, O., Kannathal, N., Chua, T., Laxminarayan, S.: Non-linear analysis of EEG signals at various sleep stages. Comput. Methods Programs Biomed. 80(1), 37–45 (2005). doi:10.1016/j.cmpb.2005.06.011

    Article  Google Scholar 

  18. Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116(10), 2266–2301 (2005). doi:10.1016/j.clinph.2005.06.011

    Article  Google Scholar 

Download references

Acknowledgments

L.F.S. Uribe thanks CAPES for financial support. D.C. Soriano and R. Suyama thank UFABC and FAPESP (Grant number 2012/50799-2) for the financial support. F.I. Fazanaro thanks FAPESP (Grant number 2012/09624-4) for the financial support. R. Attux thanks CNPq for financial support. All authors are grateful to FINEP for funding the DesTine project (process number 01.10.0449.00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo C. Soriano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Uribe, L.F.S. et al. (2014). A Recurrence-Based Approach for Feature Extraction in Brain-Computer Interface Systems. In: Marwan, N., Riley, M., Giuliani, A., Webber, Jr., C. (eds) Translational Recurrences. Springer Proceedings in Mathematics & Statistics, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-319-09531-8_6

Download citation

Publish with us

Policies and ethics