Skip to main content

Plasmonic Nanostructure Arrays Coupled with a Quantum Emitter

  • Chapter
  • First Online:
  • 828 Accesses

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

In the previous chapter, we saw that a metal nanoparticle (NP) can generate localized surface plasmon resonance (LSPR), as a result of the resonance of free electrons on a curved surface. We also mentioned the main difference between surface plasmon polaritons (SPP) and LSPR, namely that SPPs are propagating waves, while LSPR is a nonpropagating excitation of free electrons in a metallic nanostructure coupled to an EM field. In this chapter, we will see that SPPs in restricted geometries (such as nanoantennas or nanocavities) can also generate LSPR. Nevertheless, the conditions for excitation are different. LSPR can be excited by direct application of light, whereas SPPs can be excited by matching the frequency and momentum of the excitation light and the SPPs. For example, under laser illumination, an antenna develops a strong dipole along the antenna. Charge oscillations inside each arm give rise to strong EM fields inside the feedgap of the antenna. When the antenna is resonant at optical frequencies, it can be called a resonant nanoantenna. In this case, with sufficiently close spacing with respect to a quantum emitter (QE) and nanoantenna, they can interact forming an electric dipole.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolf, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667 (1998)

    ADS  Google Scholar 

  2. Weiner, J.: The electromagnetics of light transmission through subwavelength slits in metallic films. Opt. Express 19(17), 16139 (2011)

    ADS  Google Scholar 

  3. Yin, L., Vlasko-Vlasov, V.K., Rydh, A., Pearson, J., Welp, U., Chang, S.-H., Gray, S.K., Schatz, G.C., Brown, D.B., Kimball, C.W.: Surface plasmons at single nanoholes in Au films. Appl. Phys. Lett. 85, 467 (2004)

    ADS  Google Scholar 

  4. Rindzevicius, T., Alaverdyan, Y., Sepulveda, B., Pakizeh, T., Kall, M., Hillenbrand, R., Aizpurua, J., de Abajo, F.J.G.: Nanohole plasmons in optically thin gold films. J. Phys. Chem. C 111, 1207 (2007)

    Google Scholar 

  5. Park, T.-H., Mirin, N., Britt Lassiter, J., Nehl, C.L., Halas, N.J., Nordlander, P.: Optical properties of a nanosized hole in a thin metallic film. ACS Nano 2(1), 25 (2008)

    Google Scholar 

  6. Yuan, Z., Gao, S.: Linear-response study of plasmon excitation in metallic thin films: layer-dependent hybridization and dispersion. Phys. Rev. B 73, 155411 (2006)

    ADS  Google Scholar 

  7. Bethe, H.A.: Theory of diffraction by small holes. Phys. Rev. 66(7–8), 163 (1944)

    ADS  MATH  MathSciNet  Google Scholar 

  8. Bouwkamp, C.J.: On Bethe’s theory of diffraction by small holes. Philips Res. Rep. 5(5), 321 (1950)

    MathSciNet  Google Scholar 

  9. Tan, H.S.: On Kirchhoff’s theory in non-planar scalar diffraction. Proc. Phys. Soc. 91, 768 (1967)

    ADS  Google Scholar 

  10. Gordon, R., Brolo, A.G.: Increased cut-off wavelength for a subwavelength hole in a real metal. Opt. Express 13(6), 1933 (2005)

    ADS  Google Scholar 

  11. Shin, H., Catrysse, P.B., Fan, S.: Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes. Phys. Rev. B 72(8), 085436 (2005)

    ADS  Google Scholar 

  12. García, N., Bai, M.: Theory of transmission of light by subwavelength cylindrical holes in metallic films. Opt. Express 14(21), 10028 (2006)

    ADS  Google Scholar 

  13. García-Vidal, F.J., Moreno, E., Porto, J.A., Martín-Moreno, L.: Transmission of light through a single rectangular hole. Phys. Rev. Lett. 95(10), 103901 (2005)

    ADS  Google Scholar 

  14. García-Vidal, F.J., Martín-Moreno, L., Ebbesen, T.W., Kuipers, L.: Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729 (2010)

    ADS  Google Scholar 

  15. de Abajo, F.J.G.: Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267 (2007)

    ADS  Google Scholar 

  16. Weiner, J.: The physics of light transmission through subwavelength apertures and aperture arrays. Rep. Prog. Phys. 72(6), 064401 (2009)

    ADS  Google Scholar 

  17. Ferri, F.A., Rivera, V.A.G., Osório, S.P.A., Silva, O.B., Zanatta, A.R., Borges, B.V., Weiner, J., Marega Jr., E.: Influence of film thickness on the optical transmission through subwavelength single slits in metallic thin films. Appl. Opt. 50(31), G11 (2011)

    Google Scholar 

  18. Bozhevolnyi, S.I., Erland, J., Leosson, K., Skovgaard, P.M.W., Hvam, J.M.: Waveguiding in surface plasmon polariton band gap structures. Phys. Rev. Lett. 86, 3008 (2001)

    ADS  Google Scholar 

  19. Rivera, V.A.G., Ferri, F.A., Osório, S.P.A., Nunes, L.A.O., Zanatta, A.R., Marega Jr., E.: Luminescence enhancement of Er3+ ions from electric multipole nanostructured arrays. Proc. SPIE 8269, 82692H–1 (2012)

    ADS  Google Scholar 

  20. Zayats, A.V., Smolyaninov, I.I.: Near- field photonics: surface plasmons polaritons and localized surface plasmons. J. Opt. Pure Appl. Opt. 5, S16 (2003)

    ADS  Google Scholar 

  21. Smolyaninov, I.I., Zayats, A.V., Stanishevsky, A., Davis, C.C.: Optical control of photon tunneling through an array of nanometer-scale cylindrical channels. Phys. Rev. B 66, 205414 (2002)

    ADS  Google Scholar 

  22. Osório, S.P.A., Silva, O.B., Ferri, F.A., Rivera, V.A.G., Zanatta, A.R., Marega Jr., E.: Integrated hybrid plasmonic cavity with in-plane photon-plasmon coupling for luminescence enhancement. Proc. SPIE 8269, 826928–1 (2012)

    Google Scholar 

  23. Kretschmann, M., Maradudin, A.A.: Band structures of two-dimensional surface-plasmon polaritonic crystals. Phys. Rev. B 66, 245408 (2002)

    ADS  Google Scholar 

  24. Hooper, I.R., Sambles, J.R.: Dispersion of surface plasmon polaritons on short-pitch metal gratings. Phys. Rev. B 65, 165432 (2002)

    ADS  Google Scholar 

  25. Raether, H.: Surface Plasmon on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111. Springer, New York, NY (1988)

    Google Scholar 

  26. Zayats, A.V., Smolyaninov, I.I., Maradudin, A.A.: Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131 (2005)

    ADS  Google Scholar 

  27. Thio, T., Pellerin, K.M., Linke, R.A., Lezec, H.J., Ebbesen, T.W.: Enhanced light transmission through a single subwavelength aperture. Opt. Lett. 26(24), 1972 (2001)

    ADS  Google Scholar 

  28. Rivera, V.A.G., Ferri, F.A., Nunes, L.A.O., Zanatta, A.R., Marega Jr., E.: Focusing surface plasmons on Er3+ ions through gold planar plasmonic lenses. Appl. Phys. A 109(4), 1037 (2012)

    ADS  Google Scholar 

  29. Carretero-Palacios, S., Mahboub, O., Garcia-Vidal, F.J., Martín-Moreno, L., Rodrigo, S.G., Genet, C., Ebbesen, T.W.: Mechanisms for extraordinary optical transmission through bull’s eye structures. Opt. Express 19(11), 10429 (2011)

    ADS  Google Scholar 

  30. Fu, Y., Zhou, X.: Plasmonic lenses: a review. Plasmonics 5(3), 287 (2010)

    Google Scholar 

  31. Steele, J.M., Liu, Z., Wang, Y., Zhang, X.: Resonant and non-resonant generation and focusing of surface plasmons with circular gratings. Opt. Express 14(12), 5664 (2006)

    ADS  Google Scholar 

  32. Coe, J.V., Heer, J.M., Teeters-Kennedy, S., Tian, H., Rodriguez, K.R.: Extraordinary transmission of metal films with arrays of subwavelength holes. Annu. Rev. Phys. Chem. 59, 179 (2008)

    ADS  Google Scholar 

  33. Hsieh, B.-Y., Wang, N., Jarrahi, M.: Toward ultrafast pump-probe measurements at the nanoscale. Optic. Photon. News 22(12), 48 (2011)

    ADS  Google Scholar 

  34. Srituravanich, W., Fang, N., Sun, C., Luo, Q., Zhang, X.: Plasmonic nanolithography. Nano Lett. 4(6), 1085 (2004)

    ADS  Google Scholar 

  35. Shi, X., Hesselink, L.: Mechanisms for enhancing power throughput from planar nano-apertures of near-field optical data storage. Jpn. J. Appl. Phys. 41, 1632 (2002)

    ADS  Google Scholar 

  36. Nahata, A., Linke, R.A., Ishi, T., Ohashi, K.: Enhanced nonlinear optical conversion from a periodically nanostructured metal flim. Opt. Lett. 28(6), 423 (2003)

    ADS  Google Scholar 

  37. Liu, C., Kamaev, V., Vardeny, Z.V.: Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array. Appl. Phys. Lett. 86, 143501 (2005)

    ADS  Google Scholar 

  38. Polman, A.: Plasmonics applied. Science 322(5903), 868 (2008)

    Google Scholar 

  39. White, J.S., Veronis, G., Yu, Z., Barnard, E.S., Chandran, A., Fan, S., Brongersma, M.L.: Extraordinary optical absorption through subwavelength slits. Opt. Lett. 34(5), 686 (2009)

    ADS  Google Scholar 

  40. Shalaev, V.: Engineering Space for Light with Metamaterials. NATO-ASI, Ottawa (2008)

    Google Scholar 

  41. Schröter, U., Heitmann, D.: Surface plasmon enhanced transmission through metallic gratings. Phys. Rev. B 58, 15419 (1998)

    ADS  Google Scholar 

  42. Popov, E., Nevière, M., Enoch, S., Reinisch, R.: Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B 62, 16100 (2000)

    ADS  Google Scholar 

  43. Andrewartha, J.R., Fox, J.R., Wilson, I.J.: Further properties of lamellar grating resonance anomalies. Opt. Acta 26(2), 197 (1979)

    ADS  Google Scholar 

  44. Barnes, W.L., Preist, T.W., Kitson, S.C., Sambles, J.R.: Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B 54, 6227 (1996)

    ADS  Google Scholar 

  45. Darmanyan, S.A., Zayats, A.V.: Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study. Phys. Rev. B 67, 035424 (2003)

    ADS  Google Scholar 

  46. Wood, R.W.: Anomalous diffraction gratings. Phys. Rev. 48, 928 (1935)

    ADS  Google Scholar 

  47. Chang, S.-H., Gray, S.K., Schatz, G.C.: Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt. Express 13(8), 3150 (2005)

    ADS  Google Scholar 

  48. Bravo-Abad, J., Degiron, A., Przybilla, F., Genet, C., García-Vidal, F.J., Martín-Moreno, L., Ebbesen, T.W.: How light emerges from an illuminated array of subwavelength holes. Nat. Phys. 2, 120 (2006)

    Google Scholar 

  49. Rivera, V.A.G., Ferri, F.A., Silva, O.B., Sobreira, F.W.A., Marega, E. Jr.: In: Kim K.Y. (ed.) Light transmission via subwavelength apertures in metallic thin films, Chapter 7, Intech, Croatia (2012)

    Google Scholar 

  50. Zia, R., Selker, M.D., Catrysse, P.B., Brongersma, M.L.: Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21(12), 2442 (2004)

    ADS  Google Scholar 

  51. Chang, D.E., Sørensen, A.S., Hemmer, P.R., Lukin, M.D.: Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007)

    ADS  Google Scholar 

  52. Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957)

    ADS  MathSciNet  Google Scholar 

  53. Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photon. 2, 496 (2008)

    Google Scholar 

  54. Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402 (2007)

    ADS  Google Scholar 

  55. Rivera, V.A.G., Ledemi, Y., Osório, S.P.A., Ferri, F.A., Messaddeq, Y., Nunes, L.A.O., Marega Jr., E.: Optical gain medium for plasmonic devices. Proc. SPIE 8621, 86211J (2013)

    ADS  Google Scholar 

  56. Gather, M.C., Meerholz, K., Danz, N., Leosson, K.: Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat. Photon. 4, 457 (2010)

    ADS  Google Scholar 

  57. García-Blanco, S.M., Sefunc, M.A., van Voorden, M.H., Pollnau, M.: Loss compensation in metal-loaded hybrid plasmonic waveguides using Yb3+ potassium double tungstate gain materials. doi: 10.1109/ICTON. 2012.6254494

    Google Scholar 

  58. Dahal, R., Ugolini, C., Lin, J.Y., Jiang, H.X., Zavada, J.M.: Erbium-doped GaN optical amplifiers operating at 1.54 μm. Appl. Phys. Lett. 95(11), 111109 (2009)

    ADS  Google Scholar 

  59. Feigenbaum, E., Orenstein, M.: Modeling of complentary(void) plasmon waveguiding. J. Lightwave. Tech. 25(9), 2547 (2007)

    ADS  Google Scholar 

  60. Veronis, G., Fan, S.: Modes of subwavelength plasmonic slot waveguides. J. Lightwave. Tech. 25(9), 2511 (2007)

    ADS  Google Scholar 

  61. Yu, Z., Veronis, G., Fan, S., Brongersma, M.L.: Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 92, 041117 (2008)

    ADS  Google Scholar 

  62. García-Blanco, S.M., Pollnau, M., Bozhevolnyi, S.I.: Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides. Opt. Express 19(25), 25298 (2011)

    ADS  Google Scholar 

  63. Moreno, E., Rodrigo, S.G., Bozhevolnyi, S.I., Martín-Moreno, L., García-Vidal, F.J.: Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys. Rev. Lett. 100, 023901 (2008)

    ADS  Google Scholar 

  64. Yan, M., Qiu, M.: Guided plasmon polariton at 2D metal corners. J. Opt. Soc. Am. B 24(9), 2333 (2007)

    ADS  Google Scholar 

  65. Pile, D.F.P., et al.: Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett. 87, 061106 (2005)

    ADS  Google Scholar 

  66. Satuby, Y., Orenstein, M.: Surface-plasmon-polariton modes in deep metallic trenches- measurement and analysis. Opt. Exp. 15(7), 4247 (2007)

    ADS  Google Scholar 

  67. Burke, J.J., Stegeman, G.I., Tamir, T.: Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33, 5186 (1986)

    ADS  Google Scholar 

  68. Zia, R., Schuller, J.A., Brongersma, M.L.: Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides. Phys. Rev. B 74, 165415 (2006)

    ADS  Google Scholar 

  69. Verhagen, E., Polman, A., Kuipers, L.K.: Nanofocusing in laterally tapered plasmonic waveguides. Opt. Exp. 16(1), 45 (2008)

    ADS  Google Scholar 

  70. Maier, S.A., et al.: Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229 (2003)

    ADS  Google Scholar 

  71. Onuki, T., et al.: Propagation of surface plasmon polariton in nanometer-sized metal-clad optical waveguides. J. Microsc. 210(3), 284 (2003)

    MathSciNet  Google Scholar 

  72. Conway, J.A., Sahni, S., Szkopek, T.: Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs. Opt. Exp. 15(8), 4474 (2007)

    ADS  Google Scholar 

  73. Brongersma, M. L., Kik, P. G.: Surface Plasmon Nanophotonics. Springer, P.O. Box 17, 3300 AA Dordrecht (2007)

    Google Scholar 

  74. Bharadwaj, P., Deutsch, B., Novotny, L.: Optical antennas. Adv. Opt. Photon. 1(3), 438 (2009)

    Google Scholar 

  75. Schuck, P.J., Fromm, D.P., Sundaramurthy, A., Kino, G.S., Moerner, W.E.: Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005)

    ADS  Google Scholar 

  76. Søndergaard, T., Bozhevolnyi, S.I.: Metal nano-strip optical resonators. Opt. Exp. 15(7), 4198 (2007)

    ADS  Google Scholar 

  77. Gersten, J., Nitzan, A.: Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73(7), 3023 (1980)

    ADS  Google Scholar 

  78. Lee, B., Kim, S., Kim, H., Lim, Y.: The use of plasmonics in light beaming and focusing. Prog. Quantum. Electron. 34(2), 47 (2010)

    ADS  Google Scholar 

  79. Editorial: Extending opportunities. Nat. Photon. 6, 407 (2012)

    Google Scholar 

  80. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge (2000)

    MATH  Google Scholar 

  81. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165 (2007)

    ADS  Google Scholar 

  82. Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83 (2010)

    ADS  Google Scholar 

  83. Zhang, J., Cai, L., Bai, W., Xu, Y., Song, G.: Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. Opt. Lett. 36(12), 2312 (2011)

    ADS  Google Scholar 

  84. Jin, X.R., Sun, L., Yang, X., Gao, J.: Quantum entanglement in plasmonic waveguides with near-zero mode indices. Opt. Lett. 38(20), 4078 (2013)

    ADS  Google Scholar 

  85. Nezhad, M.P., Tetz, K., Fainman, Y.: Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Exp. 12(17), 4072 (2004)

    ADS  Google Scholar 

  86. Maier, S.A.: Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides. Optic. Comm. 258(2), 295 (2006)

    ADS  MathSciNet  Google Scholar 

  87. Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Google Scholar 

  88. Maier, S.A.: Effective mode volume of nanoscale plasmon cavities. Opt. Quant. Electron. 38(1–3), 257 (2006)

    Google Scholar 

  89. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, New York, NY (2008)

    MATH  Google Scholar 

  90. Brune, M., et al.: Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800 (1996)

    ADS  MATH  Google Scholar 

  91. Finazzi, M., Ciaccacci, F.: Plasmon-photon interaction in metal nanoparticles: second-quantization perturbative approach. Phys. Rev. B 86, 035428 (2012)

    ADS  Google Scholar 

  92. Archamabault, A., Marquier, F., Greffet, J.-J., Arnold, C.: Quantum theory of spontaneous and stimulated emission of surface plasmons. Phys. Rev. B 82, 035411 (2010)

    ADS  Google Scholar 

  93. Trugler, A., Hohenester, U.: Strong coupling between a metallic nanoparticle and a single molecule. Phys. Rev. B 77, 115403 (2008)

    ADS  Google Scholar 

  94. Van Vlack, C., Kristensen, P.T., Hughes, S.: Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system. Phys. Rev. B 85, 075303 (2012)

    ADS  Google Scholar 

  95. Hummer, T., García-Vidal, F.J., Martín-Moreno, L., Zueco, D.: Weak and Strong coupling regimes in plasmonic QED. Phys. Rev. B 87, 115419 (2013)

    ADS  Google Scholar 

  96. Monroe, C.: Quantum information processing with atoms and photons. Nature 416, 238 (2002)

    ADS  Google Scholar 

  97. Naik, G.V., Kim, J., Boltasseva, A.: Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mat. Exp. 1(6), 1090 (2011)

    Google Scholar 

  98. Rivera, V.A.G., Ferri, F.A., Marega, E. Jr.: In: Kim KY (ed.) Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions, (Chapter 11), Intech, Croatia (2012)

    Google Scholar 

  99. Dzsotjan, D., Käestel, J., Fleischhauer, M.: Dipole-dipole shift of quantum emitters coupled to surface plasmons of a nanowire. Phys. Rev. B 84, 075419 (2011)

    ADS  Google Scholar 

  100. Rivera, V.A.G., Ledemi, Y., El-Amraoui, M., Messaddeq, Y., Marega Jr., E.: Resonant near-infrared emission of Er3+ ions in plasmonic arrays of subwavelength square holes. Proc. SPIE 8632, 863225–1 (2013)

    Google Scholar 

  101. Rivera, V.A.G., Ledemi, Y., Messaddeq, Y., Marega Jr., E.: Plasmonic emission enhancement from Er3+-doped tellurite glass via negative-nanobowtie. Proc. SPIE 8994, 899421–1 (2014)

    Google Scholar 

  102. Silva, O.B., Rivera, V.A.G., Ferri, F.A., Ledemi, Y., Zanatta, A.R., Messaddeq, Y., Marega Jr., E.: Quantum-plasmonic interaction: emission enhancement of Er3+ - Tm3+ co-doped tellurite glass via tuning nanobowtie. Proc. SPIE 8809, 88092X–1 (2013)

    ADS  Google Scholar 

  103. Kim, H., Bose, R., Shen, T.C., Solomon, G.S., Waks, E.: A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photon. 7, 373 (2013)

    ADS  Google Scholar 

  104. Lo, J.-W., Lien, W.-C., Lin, C.-A., He, J.-H.: Er-Doped ZnO nanorod arrays with enhanced 1540 nm emission by employing Ag island films and high-temperature annealing. ACS Appl. Mater. Interfaces 3(4), 1009 (2011)

    Google Scholar 

  105. Mertens, H., Polman, A.: Plasmon-enhanced erbium luminescence. Appl. Phys. Lett. 89(21), 211107 (2006)

    ADS  Google Scholar 

  106. Gopinath, A., Boriskina, S.V., Yerci, S., Li, R., Dal Negro, L.: Enhancement of the 1.54 μm Er3+ emission from quasiperiodic plasmonic arrays. Appl. Phys. Lett. 96(7), 071113 (2010)

    ADS  Google Scholar 

  107. Hofmann, C.E., García de Abajo, F.J., Atwater, H.A.: Enhancing the radiative rate in III-V semiconductor plasmonic core-shell nanowire resonators. Nano Lett. 11(2), 372 (2011)

    ADS  Google Scholar 

  108. Karaveli, S., Zia, R.: Spectral tuning by selective enhancement of electric and magnetic dipole emission. Phys. Rev. Lett. 106, 193004 (2011)

    ADS  Google Scholar 

  109. Zhou, W., Dridi, M., Suh, J.Y., Kim, C.H., Co, D.T., Wasielewski, M.R., Schatz, G.C., Odom, T.W.: Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506 (2013)

    ADS  Google Scholar 

  110. Zhou, W., Odom, T.W.: Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat. Nanotechnol. 6, 423 (2011)

    ADS  Google Scholar 

  111. Gruner, T., Welsch, D.G.: Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers-Kroning dielectrics. Phys. Rev. A 53, 1818 (1996)

    ADS  Google Scholar 

  112. Sakurai, J.J.: Advanced Quantum Mechanics. Addison-Wesley, New York, NY (1967)

    Google Scholar 

  113. Judd, B.R.: Optical absorption intensities of rare earth ions. Phys. Rev. 127(3), 750 (1962)

    ADS  Google Scholar 

  114. Gramotnev, D.K.: Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach. J. Appl. Phys. 98(10), 104302 (2005)

    ADS  Google Scholar 

  115. De Angelis, F., et al.: A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett. 8(8), 2321 (2008)

    ADS  Google Scholar 

  116. De Angelis, F., et al.: Nanoscale chemical mapping using three dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 5, 67 (2010)

    ADS  Google Scholar 

  117. Stockman, M.I.: Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004)

    ADS  Google Scholar 

  118. Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.-Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508 (2006)

    ADS  Google Scholar 

  119. Durach, M., Rusina, A., Stockman, M.I., Nelson, K.: Toward full spatiotemporal control on the nanoscale. Nano Lett. 7(10), 3145 (2007)

    ADS  Google Scholar 

  120. Park, I.-Y., Kim, S., Choi, J., Lee, D.-H., Kim, Y.-J., Kling, M.F., Stockman, M.I., Kim, S.-W.: Plasmonic generation of ultrashort extreme ultraviolet light pulses. Nat. Photon. 5, 677 (2011)

    ADS  Google Scholar 

  121. Issa, N.A., Guckenberger, R.: Optical nanofocusing on tapered metallic waveguides. Plasmonics 2(1), 31 (2007)

    Google Scholar 

  122. Gramotnev, D.K., Pile, D.F.P., Vogel, M.W., Zhang, X.: Local electric field enhancement during nanofocusing of plasmons by tapered gap. Phys. Rev. B 75, 035431 (2007)

    ADS  Google Scholar 

  123. Dereux, A., et al.: Direct interpretation of near-field optical images. J. Microsc. 202(2), 320 (2001)

    MathSciNet  Google Scholar 

  124. Mehtani, D., et al.: Optical properties and enhancement factors of the tips for apertureless near-field optics. J. Opt. A 8(4), S183 (2006)

    ADS  Google Scholar 

  125. Chul Kim, H., Cheng, X.: Gap surface plasmon polaritons enhanced by plasmonic lens. Opt. Lett. 36(16), 3082 (2011)

    ADS  Google Scholar 

  126. Rivera, V.A.G., Osório, S.P.A., Ledemi, Y., Manzani, D., Messaddeq, Y., Nunes, L.A.O., Marega Jr., E.: Localized surface plasmon resonance interaction with Er3+-doped tellurite glass. Opt. Express. 18(24), 25321 (2010)

    Google Scholar 

  127. Anger, P., Bharadwaj, P., Novotny, L.: Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)

    ADS  Google Scholar 

  128. Kühn, S., Håkanson, U., Rogobete, L., Sandoghdar, V.: Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006)

    ADS  Google Scholar 

  129. Rivera, V.A.G., Ferri, F.A., Osório, S.P.A., Nunez, L.A.O., Zanatta Sr., A.R., Marega Jr., E.: Focusing surface plasmons on Er3+ ions with convex/concave plasmonic lenses. Proc. SPIE 8269, 82692I (2012)

    ADS  Google Scholar 

  130. Muskens, O.L., et al.: Strong enhancement of radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett. 7(9), 2871 (2007)

    ADS  Google Scholar 

  131. Halas, N.J., Lal, S., Chang, W.-S., Link, S., Nordlander, P.: Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111(6), 3913 (2011)

    Google Scholar 

  132. Morton, S.M., Silverstein, D.W., Jensen, L.: Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111(6), 3962 (2011)

    Google Scholar 

  133. Moskovits, M., Jeong, D.H.: Engineering nanostructures for giant optical fields. Chem. Phys. Lett. 397(1–3), 91 (2004)

    ADS  Google Scholar 

  134. Graeme McNay, David, E, Smith, W.E., Faulds, K., Graham, D.: Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl. Spec. 65(8), 825 (2011)

    Google Scholar 

  135. Yariv, A., Yeh, P.: Optical Waves in Crystals: Propagation and Control of Laser Radiation. Wiley, Hoboken, NJ (2003)

    Google Scholar 

  136. Hao, J., et al.: Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99, 063908 (2007)

    ADS  Google Scholar 

  137. Magruder, R.H., Wittig, J.E.: Wavelength tenability of the surface plasmon resonance of nanosize metal colloids in glass. J. Non-Cryst. Solids. 163(2), 162 (1993)

    ADS  Google Scholar 

  138. Nolte, D.D.: Optical scattering and absorption by metal nanoclusters in GaAs. J. Appl. Phys. 76(6), 3740 (1994)

    ADS  MathSciNet  Google Scholar 

  139. Jana, N.R., Gearheart, L., Murphy, C.J.: Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 17(22), 6782 (2001)

    Google Scholar 

  140. Sukharev, M., Seideman, T.: Phase and polarization control as a route to plasmonic nanodevices. Nano Lett. 6(4), 715 (2006)

    ADS  Google Scholar 

  141. Eftekhari, F., Escobedo, C., Ferreira, J., Duan, X., Girotto, E.M., Brolo, A.G., Gordon, R., Sinton, D.: Nanoholes as nanochannels: flow through plasmonic sensing. Anal. Chem. 81(11), 4308 (2009)

    Google Scholar 

  142. Curto, A. G. Ph.D. Thesis, Universitat Politècnica de Catalunya (2013)

    Google Scholar 

  143. Jackson, J.D. (ed.): Classical Electrodynamics. Wiley, Hoboken, NJ (1999)

    MATH  Google Scholar 

  144. Lindquist, N.C., et al.: Engineering metallic nanopartilces for plasmonics and nanophotonics. Rep. Prog. Phys. 75(3), 036501 (2012)

    ADS  Google Scholar 

  145. Balanis, C.A. (ed.): Antenna Theory: Analysis and Design. Wiley, Hoboken, NJ (2005)

    Google Scholar 

  146. Chakrabarty, A., Wang, F., Minkowski, F., Sun, K., Wei, Q.H.: Cavity modes and their excitations in elliptical plasmonic patch nanoantennas. Opt. Exp. 20(11), 11615 (2012)

    ADS  Google Scholar 

  147. Gutiérrez-Vega, J.C., Rodriguez-Dagnino, R.M., Meneses-Nava, M.A., Chávez-Cerda, S.: Mathieu functions, a visual approach. Am. J. Phys. 71(3), 233 (2003)

    ADS  Google Scholar 

  148. Wang, F., Chakrabarty, A., Minkowski, F., Sun, K., Wei, Q.-H.: Polarization conversion with elliptical patch nanoantennas. Appl. Phys. 101(2), 023101 (2012)

    ADS  Google Scholar 

  149. Gong, X., Chen, Y., Lin, Y., Tan, Q., Luo, Z., Huang, Y.: Polarized spectral analysis and laser demonstration of Nd3+:Bi2 (MoO4)3 biaxial crystal. J. Appl. Phys. 103 (2008).

    Google Scholar 

  150. Bergman, D.J., Stockman, M.I.: Surface plasmon amplification by stimulated emission radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003)

    ADS  Google Scholar 

  151. Stockman, M.I.: Spasers explained. Nat. Photon. 2, 327 (2008)

    ADS  Google Scholar 

  152. Noginov, M.A., et al.: Demonstration of a spaser-based nanolaser. Nature 460, 1110 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 V.A.G. Rivera, O.B. Silva, Y. Ledemi, Y. Messaddeq, and E. Marega Jr.

About this chapter

Cite this chapter

Rivera, V.A.G., Silva, O.B., Ledemi, Y., Messaddeq, Y., Marega, E. (2015). Plasmonic Nanostructure Arrays Coupled with a Quantum Emitter. In: Collective Plasmon-Modes in Gain Media. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-09525-7_3

Download citation

Publish with us

Policies and ethics