Skip to main content

Plasmonic Nanoparticles Coupled with an |n〉-State Quantum System

  • Chapter
  • First Online:
Collective Plasmon-Modes in Gain Media

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 799 Accesses

Abstract

The first chapter was dedicated to the interaction of light with matter via the description of the dielectric function of a free electron gas, the optical properties of metals and rare-earth ions (REI), and the surface plasmon polariton (SPP) in a gain medium, thus laying the foundation for a good understanding of the field and easier reading of this book. In this chapter, we will describe the behaviors resulting from coupling between plasmonic nanoparticles and an |n〉-state quantum system. By definition, an n-state quantum system is a system characterized by a set of quantum numbers, represented by an eigenfunction, and for which the energy of each state is precisely within the limits imposed by the uncertainty principle but may be changed by applying a field or force. States of the same energy are called degenerate [1]. Solid-state emitters, such as semiconductor quantum dots (QD) or REIs, are examples of n-state quantum systems that have been extensively investigated. In particular, REIs have been recently attracting much interest for quantum information processing, owing to their unique shielding of 4f-shell transitions from their surroundings and consequently longer coherence times [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novotny, L., Hecht, B. (eds.): Principles of Nano-Optics. Cambridge University Press, Cambridge (2006). Chapter 9

    Google Scholar 

  2. Utikal, T., Eichhammer, E., Petersen, L., Renn, A., Gotzinger, S., Sandoghdar, V.: Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat. Commun. 5, 3627 (2014)

    Article  ADS  Google Scholar 

  3. Thiel, C.W., Bottger, T., Cone, R.L.: Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin. 131(3), 353 (2011)

    Article  Google Scholar 

  4. Rivera, V.A.G., Ledemi, Y., Osorio, S.P.A., Manzani, D., Ferri, F.A., Ribeiro, S.J.L., Nunes, L.A.O., Marega Jr., E.: Tunable plasmon resonance modes on gold nanoparticles in Er3+-doped germanium–tellurite glass. J. Non-Cryst. Solids 378, 126 (2013)

    Article  ADS  Google Scholar 

  5. Rivera, V.A.G., Osorio, S.P.A., Ledemi, Y., Manzani, D., Messaddeq, Y., Nunes, L.A.O., Marega Jr., E.: Localized surface plasmon resonance interaction with Er3+-doped telluriteglass. Opt. Exp. 18(24), 25321 (2010)

    Article  Google Scholar 

  6. Rivera V.A.G., Ferri, F.A., Marega, E. Jr.: In: Kim KY (ed.) Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions, Chapter 11, Intech, Croatia (2012).

    Google Scholar 

  7. Tame, M.S., et al.: Quantum plasmonics. Nat. Phys. 9, 329 (2013)

    Article  Google Scholar 

  8. Nature Photonics: Special Issue on Plasmonics. 6(11) 707–794 (2012)

    Google Scholar 

  9. Bharadwaj, P., Deutsch, B., Novotny, L.: Optical antennas. Adv. Opt. Photon. 1, 438 (2009)

    Article  Google Scholar 

  10. Lim, Z.Z.J., Li, J.E.J., NG, C.T., Yung, L.Y.L., Bay, B.H.: Gold nanoparticles in cancer therapy. Acta. Pharmac. Sinica 32, 983 (2011)

    Article  Google Scholar 

  11. Zhang, Z., Wang, L., Wang, J., Jiang, X., Li, X., Hu, Z., Ji, Y., Wu, X., Chen, C.: Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 24(11), 1418 (2012)

    Article  Google Scholar 

  12. Mayer, K.M., Hao, F., Lee, S., Nordlander, P., Hafner, J.H.: A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology 21, 255503 (2010)

    Article  ADS  Google Scholar 

  13. Sepulveda, B., Angelmore, P.C., Lechuga, L.M., Marzan, L.M.L.: LSPR-based nanobiosensors. Nano Today 4(3), 244 (2009)

    Article  Google Scholar 

  14. Giannini, V., Dominguez, A.I.F., Heck, S.C., Maier, S.A.: Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111(6), 3888 (2011)

    Article  Google Scholar 

  15. Michel, J.F.: Digonnet, Rare-Earth-Doped Fiber Laser and Amplifiers, 2nd edn. Marcel Dekker InC, New York, NY (2001)

    Google Scholar 

  16. Yang, W.-H., Schatz, G.C., Duyne, R.P.V.: Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys. 103, 869 (1995)

    Article  ADS  Google Scholar 

  17. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas. Propagat. 14, 302 (1966)

    Article  ADS  MATH  Google Scholar 

  18. Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York, NY (2002)

    MATH  Google Scholar 

  19. Mayer, K.M., Hafner, J.H.: Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828 (2011)

    Article  Google Scholar 

  20. Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  21. Link, S., Mohamed, M.B., El-Sayed, M.A.: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073 (1999)

    Article  Google Scholar 

  22. Miller, M.M., Lazarides, A.A.: Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 109, 21556 (2005)

    Article  Google Scholar 

  23. Dai, D., He, S.: A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Exp. 17(19), 16646 (2009)

    Article  ADS  Google Scholar 

  24. Ferri, F.A., Rivera, V.A.G., Osorio, S.P.A., Silva, O.B., Zanatta, A.R., Borges, B.H.V., Weiner, J., Marega Jr., E.: Influence of film thickness on the optical transmission through subwavelength single slits in metallic thin films. Appl. Opt. 50(31), G11 (2011)

    Article  Google Scholar 

  25. Ferri, F.A., Rivera, V.A.G., Silva, O.B., Osorio, S.P.A., Zanatta, A.R., Borges, B.-H.V., Weiner, J., Marega Jr., E.: Surface plasmon propagation in novel multilayered metallic thin films. Proc. SPIE 8269, 826923 (2012)

    Article  Google Scholar 

  26. Sun, Z., Jung, Y.S., Kim, H.K.: Role of surface plasmons in the optical interaction in metallic gratings with narrow slits. Appl. Phys. Lett. 83(15), 3021 (2003)

    Article  ADS  Google Scholar 

  27. Catchpole, K.R., Polman, A.: Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 93, 191113 (2008)

    Article  ADS  Google Scholar 

  28. Acimovic, S.S., et al.: Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3(5), 1231 (2009)

    Article  Google Scholar 

  29. Mallidi, S., et al.: Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett. 9(8), 2825 (2009)

    Article  ADS  Google Scholar 

  30. Lu, X., Rycenga, M., Skrabalak, S.E., Wiley, B., Xia, Y.: Chemical synthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem. 60, 167 (2009)

    Article  ADS  Google Scholar 

  31. Blaber, M.G., Arnold, M.D., Ford, M.J.: Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver. J. Phys. Chem. C 113(8), 3041 (2009)

    Article  Google Scholar 

  32. Osorio, S.P.A., Rivera, V.A.G., Nunes, L.A.O., Marega Jr., E., Manzani, D., Messaddeq, Y.: Plasmonic coupling in Er3+:Au tellurite glass. Plasmonics 7(1), 53 (2012)

    Article  Google Scholar 

  33. Zori, I., Zach, M., Kasemo, B., Langhammer, C.: Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms. ACS Nano 5(4), 2535 (2011)

    Article  Google Scholar 

  34. Langhammer, C., Schwind, M., Kasemo, B., Zoric, I.: Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8, 1461 (2008)

    Article  ADS  Google Scholar 

  35. Knight, M.W., King, N.S., Liu, L., Everitt, H.O., Nordlander, P., Halas, N.J.: Aluminum for plasmonics. ACS Nano 8(1), 834 (2014)

    Article  Google Scholar 

  36. George, H.C., Zhao, J., Schatz, G.C., Van Duyne, R.P.: Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C 112(36), 13958 (2008)

    Article  Google Scholar 

  37. DeSantis, C.J., Weiner, R.G., Radmilovic, A., Bower, M.M., Skrabalak, S.E.: Seeding bimetallic nanostructures as a new class of plasmonic colloids. J. Phys. Chem. Lett. 4, 3072 (2013)

    Article  Google Scholar 

  38. Chemical Reviews: Special issue on plasmonics. 111(6), 3667–3994 (2011)

    Google Scholar 

  39. Quinten, M.: Optical Properties of Nanoparticles Systems. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2011)

    Book  Google Scholar 

  40. Fendler, J.H. (ed.): Nanoparticles and Nanostructured Films. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (1998)

    Google Scholar 

  41. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer Science + Business Media LLC, New York, NY (2007)

    Google Scholar 

  42. Palik, E.D.: Handbook of Optical Constants of Solids II. Elsevier, Orlando, FL (1998)

    Google Scholar 

  43. Lance Kelly, K., Coronado, E., Zhao, L.L., Schatz, G.C.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  44. Link, S., El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212 (1999)

    Article  Google Scholar 

  45. Evanoff, D.D., White, R.L., Chumanov, G.: Measuring the distance dependence of the local electromagnetic field from silver nanoparticles. J. Phys. Chem. B 108(37), 1522 (2004)

    Article  Google Scholar 

  46. Kuwata, H., Tamaru, H., Esumi, K., Miyano, K.: Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation. Appl. Phys. Lett. 83, 4625 (2003)

    Article  ADS  Google Scholar 

  47. Prescott, S.W., Mulvaney, P.: Gold nanorod extinction spectra. J. Appl. Phys. 99, 123504–123510 (2006)

    Article  ADS  Google Scholar 

  48. Huang, C.P., Yin, X.G., Huang, H., Zhu, H.Y.: Study of plasmon resonance in a gold nanorod with an LC circuit model. Opt. Exp. 17(8), 6407 (2009)

    Article  ADS  Google Scholar 

  49. Mayer, K.M., Hafner, J.H.: Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828 (2011)

    Article  Google Scholar 

  50. Rycenga, M., Cobley, C.M., Zeng, J., Li, W., Moran, C.H., Zhang, Q., Qin, D., Xia, Y.: Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669 (2011)

    Article  Google Scholar 

  51. Ridolfo, A., et al.: Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the fano effect on photon statistics. Phys. Rev. Lett. 105, 263601 (2010)

    Article  ADS  Google Scholar 

  52. Silva, O.B., Rivera, V.A.G., Ferri, F.A., Ledemi, Y., Zanatta, A.R., Messaddeq, Y., Marega Jr., E.: Quantum plasmonic interaction: Emission enhancement of Er3+-Tm3+ co-doped tellurite glass via tuning nanobowtie. Proc. SPIE 8809, 88092X–1 (2013)

    Article  ADS  Google Scholar 

  53. Rivera, V.A.G., Ledemi, Y., Osorio, S.P.A., Manzani, D., Messaddeq, Y., Nunes, L.A.O., Marega Jr., E.: Efficient plasmonic coupling between Er3+:(Ag/Au) in tellurite glasses. J. Non-Cryst. Solids. 358(2), 399 (2012)

    Article  ADS  Google Scholar 

  54. Finazzi, M., Ciaccacci, F.: Plasmon-photon interaction in metal nanoparticles: second-quantization perturbative approach. Phys. Rev. B 86, 035428 (2012)

    Article  ADS  Google Scholar 

  55. Sakurai, J.J.: Advanced Quantum Mechanics. Addison-Wesley, New York, NY (1967)

    Google Scholar 

  56. Schmid, G. (ed.): Nanoparticles. Wiley-VSH Verlag GmbH & Co. KGaA, Boschstr (2010)

    Google Scholar 

  57. Raether, H.: Surface Plasmon on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, vol. 111. Springer, New York, NY (1988)

    Google Scholar 

  58. Hu, M., Novo, C., Funston, A., Wang, H.N., Staleva, H., Zou, S.L., Mulvaney, P., Xia, Y.N., Hartland, G.V.: Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J. Mater. Chem. 18, 1949 (2008)

    Article  Google Scholar 

  59. Shalaev, V.M., Botet, R., Jullien, R.: Resonant light scattering by fractal clusters. Phys. Rev. B 44, 12216 (1991)

    Article  ADS  Google Scholar 

  60. Haes, A.J., Haynes, C.L., McFarland, A.D., Schatz, G.C., Van Duyne, R.P., Zou, S.L.: Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 30, 368 (2005)

    Article  Google Scholar 

  61. Jackson John, D.: Classical Electrodynamics, 3rd edn. Wiley, New York, NY (1999)

    MATH  Google Scholar 

  62. Malta, O.L., Santa-Cruz, P.O., de Sa, G.F., Auzel, F.: Fluorescence enhancement induced by the presence of small silver particles in Eu3+-doped materials. J. Lumin. 33, 261 (1985)

    Article  Google Scholar 

  63. Som, T., Karmakar, B.: Nanosilver enhanced upconversion fluorescence of erbium ions in Er3+:Ag-antimony glass nanocomposites. J. Appl. Phys. 105, 013102 (2009)

    Article  ADS  Google Scholar 

  64. Lynch, D.K.: A new model for the infrared dielectric function of amorphous materials. Astrophys. J. 467, 894 (1996)

    Article  ADS  Google Scholar 

  65. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York, NY (1983)

    Google Scholar 

  66. Pengguang, W., Brand, L.: Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1 (1994)

    Article  Google Scholar 

  67. Clegg, R.M.: Fluorescence resonance energy transfer. Curr. Opin. Biotech. 6, 103 (1995)

    Article  Google Scholar 

  68. Snitzer, E., Woodcock, R.: Yb3+-Er3+ glass laser. Appl. Phys. Lett. 6, 45 (1965)

    Article  ADS  Google Scholar 

  69. Milanese, D., Vota, M., Chen, Q., Xing, J., Liao, G., Gebavi, H., Ferraris, M., Coluccelli, N., Taccheo, S.: Investigation of infrared emission and lifetime in Tm-doped 75TeO2:20ZnO:5Na2O (mol%) glasses: Effect of Ho and Yb co-doping. J. Non-Crys. Solids 354, 1955 (2008)

    Article  ADS  Google Scholar 

  70. Pal, A., Dhar, A., Das, S., Chen, S.Y., Sun, T., Sen, R., Grattan, K.T.V.: Ytterbium-sensitized Thulium-doped fiber laser in the near-IR with 980 nm pumping. Opt. Exp. 18(5), 5068 (2010)

    Article  ADS  Google Scholar 

  71. Zhou, B., Tao, L., Tsang, Y.H., Jin, W., Pun, E.Y.B.: Superbroadband near-IR photoluminescence from Pr3+-doped fluorotellurite glasses. Opt. Exp. 20(4), 3803 (2012)

    Article  ADS  Google Scholar 

  72. Rivera, V.A.G., El-Amraoui, M., Ledemi, Y., Messaddeq, Y., Marega Jr., E.: Expanding broadband emission in the near-IR via energy transfer between Er3+–Tm3+ co-doped tellurite-glasses. J. Lumin. 145, 787 (2014)

    Article  Google Scholar 

  73. Deng, H., Yang, S., Xiao, S., Gong, H.M., Wang, Q.Q.: Controlled synthesis and upconverted avalanche luminescence of Cerium(III) and Neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape. J. Am. Chem. Soc. 130, 2032 (2008)

    Article  Google Scholar 

  74. Ledemi, Y., Manzani, D., Sidney, J.L., Messaddeq, R.Y.: Multicolor up conversion emission and color tunability in Yb3+/Tm3+/Ho3+ triply doped heavy metal oxide glasses. Opt. Mat. 33(12), 1916 (2011)

    Article  Google Scholar 

  75. Rivera, V.A.G., Ledemi, Y., El-Amraoui, M., Messaddeq, Y., Marega, E. Jr., Green-to-Red Light Tuning by Up-Conversion Emission Via Energy Transfer in Er3+-Tm3+-Codoped Germanium-Tellurite Glasses. (2014). doi: 10.1016/j.jnoncrysol.2014.04.007

    Google Scholar 

  76. Haase, M., Schfer, H.: Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808 (2011)

    Article  Google Scholar 

  77. Zhao, J., Jin, D., Schartner, E.P., Lu, Y., Liu, Y., Vyagin, A.V., Zhang, L., Dawes, J.M., Xi, P., Piper, J.A., Goldys, E.M., Monro, T.M.: Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8, 729 (2013)

    Article  ADS  Google Scholar 

  78. Ledemi, Y., Trudel, A.A., Rivera, V.A.G., Chenu, S., Véron, E., Nunes, L.A.O., Allix, M., Messaddeq, Y.: White Light and Multicolor Emission Tuning in Triply Doped Yb3+/Tm3+/Er3+ Novel Fluoro-Phosphate Transparent Glass-Ceramics. (2014). doi: 10.1039/C4TC00455H

    Google Scholar 

  79. Shalava, A., Richards, B.S., Green, M.A.: Luminescent layers for enhanced silicon solar cell performance: up-conversion. Sol. Energy Mater. Sol. Cells 91, 829 (2007)

    Article  Google Scholar 

  80. Wyatt, R.: Spectroscopy of rare earth doped fibres. Proc. SPIE 1171, 54 (1990)

    Article  ADS  Google Scholar 

  81. Kenyon, A.J.: Recent developments in rare-earth doped materials for optoelectronics. Prog. Quant. Electron. 26, 225 (2002)

    Article  ADS  Google Scholar 

  82. Van Uitert, L.G., Johnson, L.F.: Energy transfer between rare-earth ions. J. Chem. Phys. 44, 3514 (1966)

    Article  ADS  Google Scholar 

  83. Forster, T.: Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 2, 55 (1948)

    Article  Google Scholar 

  84. Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953)

    Article  ADS  Google Scholar 

  85. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Springer Science + Business Media, New York, NY (2006)

    Book  Google Scholar 

  86. Jorgensen, C.K., Judd, B.R.: Hypersensitive pseudoquadrupole transitions in lanthanides. Mol. Phys. 8, 281 (1964)

    Article  ADS  Google Scholar 

  87. Michael Reid, F., Richardson, F.S.: Electric dipole intensity parameters for lanthanide 4f → 4f transitions. J. Chem. Phys. 79(12), 5735 (1983)

    Article  ADS  Google Scholar 

  88. Malta, O.L., Luís, D.C.: Intensities of 4f-4f transitions in glass materials. Quim. Nova 26(6), 889 (2003)

    Article  Google Scholar 

  89. Rivera, V.A.G., Ledemi, Y., Osorio, S.P.A., Ferri, F.A., Messaddeq, Y., Nunes, L.A.O., Marega Jr., E.: Optical gain medium for plasmonic devices. Proc. SPIE 8621, 86211J (2013)

    Article  ADS  Google Scholar 

  90. Gopinath, A., Boriskina, S.V., Yerci, S., Li, R., Dal, N.L.: Enhancement of the 1.54 μm Er3+ emission from quasiperiodic plasmonic arrays. Appl. Phys. Lett. 96, 071113 (2010)

    Article  ADS  Google Scholar 

  91. Lakowicz, J.R.: Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171 (2005)

    Article  Google Scholar 

  92. Tripathi, G., Rai, V.K., Rai, A., Rai, S.B.: Energy transfer between Er3+:Sm3+codoped TeO2–Li2O glass. Spectrochim. Acta. Part A 71, 486 (2008)

    Article  ADS  Google Scholar 

  93. Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 V.A.G. Rivera, O.B. Silva, Y. Ledemi, Y. Messaddeq, and E. Marega Jr.

About this chapter

Cite this chapter

Rivera, V.A.G., Silva, O.B., Ledemi, Y., Messaddeq, Y., Marega, E. (2015). Plasmonic Nanoparticles Coupled with an |n〉-State Quantum System. In: Collective Plasmon-Modes in Gain Media. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-09525-7_2

Download citation

Publish with us

Policies and ethics