Skip to main content

Quantum Aspects of Light–Matter Interaction

  • Chapter
  • First Online:
Collective Plasmon-Modes in Gain Media

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 835 Accesses

Abstract

The interactions of light with matter have been heavily investigated and well described from the end of the nineteenth century and throughout the twentieth century. By now, the phenomena of light propagation in matter, such as absorption, nonlinear absorption, refraction, reflection, dispersion, etc., are considered to be perfectly well understood and described from macro- and micro-scale points of view. For a comprehensive description of the phenomenology of light–matter interaction, the reader is invited to read the major references [1, 2]. The late twentieth century has witnessed major breakthroughs and significant progress in the fields of fabrication, observation, and characterization of objects at incredibly small sizes, giving rise to a whole set of new terms with the prefix “nano-” [3–7]. This rapid emergence has resulted in many major advances in scientific fields related to nano-objects (like nanoparticles, nanorods, nanofilms) or nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yehuda, B.: Light and matter: electromagnetism, optics, spectroscopy and lasers. Wiley, West Sussex (2006)

    Google Scholar 

  2. Menzel, R.: Photonics, linear and nonlinear interaction of laser light and matter, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  3. Novotny, L., Hecht, B.: Principles of Nano-Optics. Cambridge University Press, New York, NY (2006)

    Book  Google Scholar 

  4. Quinten, M.: Optical Properties of Nanoparticles Systems. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2011)

    Book  Google Scholar 

  5. Schmid, G. (ed.): Nanoparticles. Wiley-VSH Verlag GmbH & Co KGaA, Boschstr (2010)

    Google Scholar 

  6. Fendler, J.H. (ed.): Nanoparticles and Nanostructured Films. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim (1998)

    Google Scholar 

  7. Gubin, S.P. (ed.): Magnetic Nanoparticles. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim (2009)

    Google Scholar 

  8. Gaponenko, S.V.: Optical Properties of Semiconductors Nanocrystals. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  9. Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters, Springer Series in Materials Science, vol. 25. Springer, Berlin (1995)

    Book  Google Scholar 

  10. Raether, H.: Surface Plasmon on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics, vol. 111. Springer, New York, NY (1988)

    Google Scholar 

  11. Wood, R.W.: On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag. 4, 396 (1902)

    Article  Google Scholar 

  12. Garnett, J.C.M.: Colours in metal glasses and in metallic films. Phil. Trans. Roy.Soc. Lond. 203, 385–420 (1904)

    Article  ADS  MATH  Google Scholar 

  13. Mie, G.: Beitrage zur optik truber medien. Ann. Phys. 25, 377 (1908)

    Article  MATH  Google Scholar 

  14. Pines, D.: Collective energy losses in solids. Rev. Mod. Phys. 28, 184 (1956)

    Article  ADS  MATH  Google Scholar 

  15. Fano, U.: Atomic theory of electromagnetic interactions in dense materials. Phys. Rev. 103, 1202 (1956)

    Article  ADS  Google Scholar 

  16. Ritchie, R.H., Arakawa, E.T., Cowan, J.J., Hamm, R.N.: Surface-Plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530 (1968)

    Article  ADS  Google Scholar 

  17. Kretschmann, E., Raether, H.: Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A. 23, 2135 (1968)

    Google Scholar 

  18. Otto, A.: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik. 216, 398 (1968)

    Article  ADS  Google Scholar 

  19. Maradudi Cunningham, C., Wallis, R.F.: Effect of a charge layer on the surface-plasmon-polariton dispersion curve. Phys. Rev. B 10, 3342 (1974)

    Article  ADS  Google Scholar 

  20. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer Science + Business Media LLC, New York, NY (2007)

    Google Scholar 

  21. Brongersma, M.L., Kik, P.G.: Surface Plasmon Nanophotonics. Springer, Dordrecht (2007)

    Book  Google Scholar 

  22. Gaponenko, S.V.: Introduction to Nanophotonics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  23. Ohtsu, M. (ed.): Progress in Nanophotonics. Springer, New York, NY (2013)

    Google Scholar 

  24. Jahr, N., Anwar, M., Stranik, O., Ha¨drich, N., Vogler, N., Csaki, A., Popp, J., Fritzsche, W.: Spectroscopy on single metallic nanoparticles using subwavelength apertures. J. Phys. Chem. C 117(15), 7751 (2013)

    Article  Google Scholar 

  25. Lassiter, J.B., et al.: Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett. 13(12), 5866 (2013)

    Article  ADS  Google Scholar 

  26. Wen, J., Romanov, S., Peschel, U.: Excitation of plasmonic gap waveguides by nanoantennas. Opt. Exp. 17(8), 5925 (2009)

    Article  ADS  Google Scholar 

  27. Bozhevolnyi, S.I., Sondergaard, T.: General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. Opt. Exp. 15(17), 10869 (2007)

    Article  ADS  Google Scholar 

  28. Anderson, L.J.E., et al.: A tunable plasmon resonance in gold nanobelts. Nano Lett. 11(11), 5034 (2011)

    Article  ADS  Google Scholar 

  29. Jensen, T.R., et al.: Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 104(45), 10549 (2000)

    Article  Google Scholar 

  30. Novoty, L., Hecht, B.: Principles of Nano-Optics, 2nd edn. Cambridge University Press, New York, NY (2006)

    Book  Google Scholar 

  31. Lindquist, N.C., et al.: Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75(3), 024402 (2012)

    Article  Google Scholar 

  32. Ordal, M.A., Long, L.L., Bell, R.J., Bell, S.E., Bell, R.R., Alexander Jr., R.W., Ward, C.A.: Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22(7), 1099 (1983)

    Article  ADS  Google Scholar 

  33. Palik, E.D. (ed.): Handbook of Optical Constants of Solids II. Elsevier, Orlando (1998)

    Google Scholar 

  34. Serna, R., Gonzalo, J., Afonso, C.N., de Sande, J.C.G.: Anomalous dispersion in nanocomposite films at the surface plasmon resonance. Appl. Phys. B. 73(4), 339 (2001)

    Article  ADS  Google Scholar 

  35. Gonzalez-Tudela, A., Huidobro, P.A., Martín-Moreno, L., Tejedor, C., García-Vidal, F.J.: Reversible dynamics of single quantum emitters near metal-dielectric interfaces. Phys. Rev. B 89, 041402(R) (2014)

    Article  ADS  Google Scholar 

  36. Ford, G., Weber, W.: Electromagnetic-interactions of molecules with metal-surfaces. Phys. Rev. 113, 195 (1984)

    Google Scholar 

  37. Barnes, W.: Fluorescence near interfaces: The role of photonic mode density. J. Mod. Opt. 45(4), 661 (1998)

    Article  ADS  Google Scholar 

  38. Rivera, V.A.G., Osorio, S.P.A., Ledemi, Y., Manzani, D., Messaddeq, Y., Nunes, L.A.O., Marega Jr., E.: Localized surface plasmon resonance interaction with Er3+-doped telluriteglass. Opt. Exp. 18(24), 25321 (2010)

    Article  Google Scholar 

  39. Guo, Y., Zhang, Y.-F., Bao, X.-Y., Han, T.-Z., Tang, Z., Zhang, L.-X., Yuan, Z., Gao, S.: Linear-response study of plasmon excitation in metallic thin films: layer-dependent hybridization and dispersion. Phys. Rev. B 73, 155411 (2006)

    Article  ADS  Google Scholar 

  40. Zhang, Y.-F., Jia, J.-F., Han, T.-Z., Tang, Z., Shen, Q.-T., Guo, Y., Qiu, Z.Q., Xue, Q.-K.: Band structure and oscillatory electron-phonon coupling of Pb thin films determined by atomic-layer-resolved quantum-well states. Phys. Rev. Lett. 95, 096802 (2005)

    Article  ADS  Google Scholar 

  41. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  42. Empedocles, S.A., Neuhauser, R., Bawendi, M.G.: Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 399, 126 (1999)

    Article  ADS  Google Scholar 

  43. Basche, T., Moerner, W., Orrit, M., Wild, U.: Single–Molecule Optical Detection, Imaging and Spectroscopy. VCH, Verlagsgesellschaft, Weinheim (1977)

    Google Scholar 

  44. Thyssen, P., Binnemans, K.: Handbook on the Physics and Chemistry of Rare Earths, Chapter 248, vol. 41. Elsevier, AE Amsterdam, The Netherlands (2011)

    Google Scholar 

  45. Liu, G., Jacquier, B. (eds.): Spectroscopic Properties of Rare-Earths in Optical Materials, vol. 83. Series: Springer Series in Materials Science, Berlin (2005)

    Google Scholar 

  46. Hufner, S.: Optical Spectra of Transparent Rare Earth Compounds. Academic, New York, NY (1978)

    Google Scholar 

  47. Judd, B.R.: Operator Techniques in Atomic Spectroscopy. McGraw-Hill, New York, NY (1963)

    Google Scholar 

  48. Wybourne, B.G.: Spectroscopic Properties of Rare Earths. Wiley, New York, NY (1965)

    Google Scholar 

  49. Pisarski, W.A., Goryczka, T., Wodecka-Dus, B., Płonska, M., Pisarska, J.: Structure and properties of rare earth-doped lead borate glasses. Mat. Sci. Eng. B. 122(2), 94 (2005)

    Article  Google Scholar 

  50. Kanjilal, A., Rebohle, L., Skorupa, W., Helm, M.: Correlation between the microstructure and electroluminescence properties of Er-doped metal-oxide semiconductor structures. Appl. Phys. Lett. 94, 101916 (2009)

    Article  ADS  Google Scholar 

  51. Kenyon, A.J.: Recent developments in rare-earth doped materials for optoelectronics. Prog. Quantum. Electron. 26, 225 (2002)

    Article  ADS  Google Scholar 

  52. van Vleck, J.H.: The puzzle of rare-Earth spectra in solids. J. Phys. Chem. 41, 67 (1937)

    Article  Google Scholar 

  53. Cheng, Z., Xing, R., Hou, Z., Huang, S., Jun, L.: Patterning of light-emitting YVO4:Eu3+ thin films via inkjet printing. J. Phys. Chem. C 114(21), 9883 (2010)

    Article  Google Scholar 

  54. Rivera, V.A.G., Ferri, F.A., Clabel, H.J.L., Pereira-da-Silva, M.A., Nunes, L.A.O., Li, M.S., Marega Jr., E.: High red emission intensity of Eu:Y2O3 films grown on Si(100)/Si (111) by electron beam evaporation. J. Lumin. 148, 186 (2014)

    Article  Google Scholar 

  55. Tanabe, S., Ohyagi, T., Todoroki, S., Hanada, T., Soga, N.: Relation between the Ω6 intensity parameter of Er3+ ions and the Eu isomer shift in oxide glasses. J. Appl. Phys. 73, 8451 (1993)

    Article  ADS  Google Scholar 

  56. Tanabe, S.: Optical transitions of rare earth ions for amplifiers: how the local structure works in glass. J. Non-Cryst. Solids 259(1–3), 1 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  57. Lin, H., Yang, D., Liu, G., Ma, T., Zhai, B., An, Q., Yu, J., Wang, X., Liu, X., Pun, E.Y.B.: Optical absorption and photoluminescence in Sm3+- and Eu3+-doped rare-earth borate glasses. J. Lumin. 113(1–2), 121 (2005)

    Article  Google Scholar 

  58. Luciana, R.P.K., da Silva, D.S., Luciana, C.B., de Araújo, C.B.: Influence of metallic nanoparticles on electric-dipole and magnetic-dipole transitions of Eu3+ doped germinate glasses. J. Appl. Phys. 107, 113506 (2010)

    Article  Google Scholar 

  59. Judd, B.R.: Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962)

    Article  ADS  Google Scholar 

  60. Ofelt, G.S.: Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962)

    Article  ADS  Google Scholar 

  61. Lee, Y.-S.: Principles of Terahertz Science and Technology. Springer, New York, NY (2009)

    Google Scholar 

  62. Agrawal, G.P.: Fiber-Optic Communication Systems. Wiley, New York, NY (2002)

    Book  Google Scholar 

  63. Mitschke, F.: Fiber Optics, Physics and Technology. Springer, New York (2009)

    Google Scholar 

  64. Digonnet, M.: Rare-Earth Doped Fiber Lasers and Amplifiers, Stanford, Chapter 2, 2nd edn. Marcel Dekker, New York, NY (2001)

    Book  Google Scholar 

  65. Boyd, R.W.: Nonlinear Optics, 3rd edn. Elsevier, London, UK (2008)

    Google Scholar 

  66. New, G.: Introduction to Nonlinear Optics. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  67. Agrawal, G.: Nonlinear Fiber Optics, 4th edn. Academic, New York, NY (2006)

    Google Scholar 

  68. Liu, G., Jacquier, B.: Spectroscopic Properties of Rare-Earths in Optical Materials, Chapter 5. Springer, New York, NY (2005)

    Google Scholar 

  69. Kilby, J.S.: Invention of the integrated circuit. IEEE Trans Electron Dev 23, 648 (1976)

    Article  Google Scholar 

  70. Agrawal, G.P.: Fiber-Optic Communication Systems, 3rd edn. Wiley, New Jersey (2010)

    Book  Google Scholar 

  71. Mitschke, F.: Fiber Optics, Physics and Technology. Springer, New York, NY (2009)

    Google Scholar 

  72. Vlasov, Y.A.: IEEE. Comm. Mag. 50(2), S67–S72 (2012)

    Google Scholar 

  73. Tanabe, K.: A review of ultrahigh efficiency III-V semiconductor compound solar cells: Multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies 2(3), 695 (2009)

    Article  MathSciNet  Google Scholar 

  74. Rivera, V.A.G., Ferri, F.A., Marega, E. Jr.: In: Kim KY (ed.) Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions, Chapter 11, Intech, Croatia (2012)

    Google Scholar 

  75. Functionalized Inorganic Fluorides, Synthesis, Characterization and Properties of Nanostructured Solids. In: Tressaud A. (ed.). Wiley, United Kingdom (2010)

    Google Scholar 

  76. Yan, C.-H., et al.: Handbook on the Physics and Chemistry of Rare Earths, (Chapter 251), vol. 41. Elsevier, New York, NY (2011)

    Google Scholar 

  77. Wang, F., Liu, X.: Rare-earth doped upconversion nanophosphors. In: Andrews, D., Scholes, G., Wiederrecht, G. (eds.) Comprehensive Nanoscience and Technology, (Chapter 18), vol. 1. Elsevier, New York, NY (2010)

    Google Scholar 

  78. Wang, F., Liu, X.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976 (2009)

    Article  Google Scholar 

  79. Wang, F., Han, Y., Lim, C.S., Lu, Y.H., Wang, J., Xu, J., Chen, H.Y., Zhang, C., Hong, M.H., Liu, X.G.: Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 V.A.G. Rivera, O.B. Silva, Y. Ledemi, Y. Messaddeq, and E. Marega Jr.

About this chapter

Cite this chapter

Rivera, V.A.G., Silva, O.B., Ledemi, Y., Messaddeq, Y., Marega, E. (2015). Quantum Aspects of Light–Matter Interaction. In: Collective Plasmon-Modes in Gain Media. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-09525-7_1

Download citation

Publish with us

Policies and ethics