Skip to main content

Mirrored Configurations

  • Chapter
  • First Online:
Book cover Mathematical Adventures in Performance Analysis
  • 912 Accesses

Abstract

We consider the problem of configuring a mirrored storage system in a way which optimizes the concurrency of reading data. The problem is translated into the problem of constructing families of regular graphs with few cycles of any given size. We compute a lower bound on the number of possible cycle. We then show two constructions, one explicit coming from number theory and the other randomized which achieve the bound and hence are optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon, N., Bachmat, E.: Regular graphs whose subgraphs tend to be acyclic. Random Struct. Algorithm 29(3), 324–337 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Milman, V.D.: λ 1, isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory Ser. B 38(1), 73–88 (1985)

    Google Scholar 

  3. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization, 2nd edn. Wiley-Interscience, New York (2000) [With an appendix on the life and work of Paul Erdős]

    Google Scholar 

  4. Alon, N., Benjamini, I., Stacey, A.: Percolation on finite graphs and isoperimetric inequalities. Ann. Probab. 32(3A), 1727–1745 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balaban, A.T.: A trivalent graph of girth ten. J. Combin. Theory Ser. B 12, 1–5 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benson, C.T.: Minimal regular graphs of girths eight and twelve. Canad. J. Math. 18, 1091–1094 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biggs, N.: Constructions for cubic graphs with large girth. Electron. J. Combin. 5(Article 1), 25 (electronic) (1998)

    Google Scholar 

  8. Bollobás, B.: Extremal Graph Theory, London Mathematical Society Monographs, vol. 11. Academic [Harcourt Brace Jovanovich Publishers], London (1978)

    Google Scholar 

  9. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Combin. 1(4), 311–316 (1980)

    Article  MATH  Google Scholar 

  10. Bollobás, B.: Random Graphs, Cambridge Studies in Advanced Mathematics, 2nd edn., vol. 73. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  11. Cain, J.A., Sanders, P., Wormald, N.: The random graph threshold for k-orientability and a fast algorithm for optimal multiple-choice allocation. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 469–476, ACM, New York (2007)

    Google Scholar 

  12. Davenport, H.: Multiplicative Number Theory, Graduate Texts in Mathematics, 2nd edn., vol. 74, Revised by Hugh L. Montgomery. Springer, New York (1980)

    Google Scholar 

  13. Davidoff, G., Sarnak, P., Valette, A.: Elementary Number Theory, Group Theory, and Ramanujan Graphs, London Mathematical Society Student Texts, vol. 55. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  14. Dickson, L.E.: Arithmetic of quaternions. Proc. London Math. Soc. S2-20(1), 225 (1921)

    Article  Google Scholar 

  15. Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink, M.: Tight thresholds for Cuckoo Hashing via XORSAT, 2009. In: Proceedings of International Colloquium on Automata, Languages and Programming, ICALP, Bordeaux, France, arxiv.org/ abs/0912.0287 (2010)

    Google Scholar 

  16. Dirichlet, P.: Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhand. Ak. Wiss. Berlin, 48 (1837)

    Google Scholar 

  17. Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787–794 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Erdős, P., Rényi, A.: On random graphs. I. Publ. Math. Debrecen 6, 290–297 (1959)

    Google Scholar 

  19. Gerritzen, L., van der Put, M.: Schottky Groups and Mumford Curves, Lecture Notes in Mathematics, vol. 817. Springer, Berlin (1980)

    Book  Google Scholar 

  20. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 5th edn. The Clarendon Press Oxford University Press, New York (1979)

    MATH  Google Scholar 

  21. Harris, Th.E.: The Theory of Branching Processes (Die Grundlehren der Mathematischen Wissenschaften, Band 119). Springer, Berlin (1963)

    Google Scholar 

  22. Hoory, Sh., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. (N.S.) 43(4), 439–561 (electronic) (2006)

    Google Scholar 

  23. Janson, S., Łuczak, T., Rucinski, A.: Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000)

    Book  MATH  Google Scholar 

  24. Kolmogorov, A.N., Barzdin, Y.M.: On the realization of nets in 3-dimensional space. In: Selected Works of A.N. Kolmogorov, vol. 3, pp. 194–202. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

  25. Lubotzky, A.: Discrete Groups, Expanding Graphs and Invariant Measures. Modern Birkhäuser Classics, Birkhäuser Verlag, Basel (2010) [With an appendix by Jonathan D. Rogawski, Reprint of the 1994 edition]

    MATH  Google Scholar 

  26. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Marcus, A., Spielman, D.A., Srivastava, N.: Interlacing families I: bipartite Ramanujan graphs of all degrees, arXiv:1304.4132 To appear in Annals of Mathematics

    Google Scholar 

  28. Margulis, G.A.: Explicit constructions of expanders. Problemy Peredači Informacii 9(4), 71–80 (1973)

    MathSciNet  MATH  Google Scholar 

  29. Margulis, G.A.: Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii 24(1), 51–60 (1988)

    MathSciNet  Google Scholar 

  30. Morgenstern, M.: Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q. J. Combin. Theory Ser. B 62(1), 44–62 (1994)

    Google Scholar 

  31. O’Keefe, M., Wong, P.K.: A smallest graph of girth 10 and valency 3. J. Combin. Theory Ser. B 29(1), 91–105 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pinsker, M.S.: On the complexity of a concentrator. In: Proceedings of 7th International Teletraffic Conference, Stockholm (1973)

    Google Scholar 

  33. Sanders, P., Egner, S., Korst, J.: Fast concurrent access to parallel disks. Algorithmica 35(1), 21–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sarnak, P.: Some applications of Modular Forms, Cambridge Tracts in Mathematics, vol. 99. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  35. Serre, J.-P.: A Course in Arithmetic (Translated from the French, Graduate Texts in Mathematics, No. 7). Springer, New York (1973)

    Google Scholar 

  36. Tillich, J.-P., Zémor, G.: Optimal cycle codes constructed from Ramanujan graphs. SIAM J. Discrete Math. 10(3), 447–459 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bachmat, E. (2014). Mirrored Configurations. In: Mathematical Adventures in Performance Analysis. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-09513-4_4

Download citation

Publish with us

Policies and ethics