Skip to main content

Contribution of Interferon Signaling to Host Defense Against Pseudomonas aeruginosa

  • Chapter
  • First Online:
Bacterial Activation of Type I Interferons
  • 516 Accesses

Summary

The opportunistic pathogen Pseudomonas aeruginosa is a common cause of infection in immunocompromised individuals, and often associated with hospital acquired pneumonias. P. aeruginosa activates type I interferon (IFN) signaling through the release of lipopolysaccharide (LPS) from the bacterial surface. Interaction between LPS and the host receptor TLR4 initiates type I IFN through the adaptor proteins TRIF and IRF3. The role of type I IFN signaling during infection is unclear at best; however, defective type I IFN signaling has been linked to the chronic respiratory infections observed in cystic fibrosis patients. This chapter will discuss how type I IFN in activated by P. aeruginosa, the current data describing its contribution to host defense, and the potential contributions of other IFN pathways in the response to this pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 27:887–892

    Article  PubMed  CAS  Google Scholar 

  2. Lynch JP (2001) Hospital-acquired pneumonia: risk factors, microbiology, and treatment. Chest 119:373S–384S

    Article  PubMed  Google Scholar 

  3. Rodríguez-Rojas A, Oliver A, Blázquez J (2012) Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections. J Infect Dis 205:121–127

    Article  PubMed  Google Scholar 

  4. Craven DE, Hjalmarson KI (2010) Ventilator associated tracheobronchitis and pneumonia: thinking outside the box. Clin Infect Dis 51:S59–S66

    Article  PubMed  Google Scholar 

  5. Kagan JC, Su T, Horng T et al (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9:361–368

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Parker D, Martin FJ, Soong G et al (2011) Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. MBio 2:e00016-11

    Google Scholar 

  7. Doyle S, Vaidya S, O’Connell R et al (2002) IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17:251–263

    Article  PubMed  CAS  Google Scholar 

  8. Björkbacka H, Fitzgerald KA, Huet F et al (2004) The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades. Physiol Genomics 19:319–330

    Article  PubMed  Google Scholar 

  9. Rowe DC, McGettrick AF, Latz E et al (2006) The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci U S A 103:6299–6304

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Visintin A, Mazzoni A, Spitzer JA, Segal DM (2001) Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc Natl Acad Sci U S A 98:12156–12161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Parker D, Cohen TS, Alhede M et al (2012) Induction of type I interferon signaling by Pseudomonas aeruginosa is diminished in cystic fibrosis epithelial cells. Am J Respir Cell Mol Biol 46:6–13

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Power MR, Li B, Yamamoto M et al (2007) A role of Toll-IL-1 receptor domain-containing adaptor-inducing IFN-beta in the host response to Pseudomonas aeruginosa lung infection in mice. J Immunol 178:3170–3176

    Article  PubMed  CAS  Google Scholar 

  13. Carrigan SO, Junkins R, Yang YJ et al (2010) IFN regulatory factor 3 contributes to the host response during Pseudomonas aeruginosa lung infection in mice. J Immunol 185:3602–3609

    Article  PubMed  CAS  Google Scholar 

  14. Cohen TS, Prince AS (2013) Bacterial pathogens activate a common inflammatory pathway through IFNλ regulation of PDCD4. PLoS Pathog 9:e1003682

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cohen TS, Prince AS (2013) Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J Clin Invest 123:1630–1637

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Kelly-Scumpia KM, Scumpia PO, Delano MJ et al (2010) Type I interferon signaling in hematopoietic cells is required for survival in mouse polymicrobial sepsis by regulating CXCL10. J Exp Med 207:319–326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Dejager L, Vandevyver S, Ballegeer M et al (2013) Pharmacological inhibition of type I interferon signaling protects mice against lethal sepsis. J Infect Dis 1–32

    Google Scholar 

  18. Huys L, Van Hauwermeiren F, Dejager L et al (2009) Type I interferon drives tumor necrosis factor-induced lethal shock. J Exp Med 206:1873–1882

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Cohen TS, Prince A (2012) Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 18:509–519

    Google Scholar 

  20. Tiringer K, Treis A, Fucik P et al (2013) A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 187:621–629

    Article  PubMed  CAS  Google Scholar 

  21. Porta C, Rimoldi M, Raes G et al (2009) Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci U S A 106:14978–14983

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Murphey ED, Herndon DN, Sherwood ER (2004) Gamma interferon does not enhance clearance of Pseudomonas aeruginosa but does amplify a proinflammatory response in a murine model of postseptic immunosuppression. Infect Immun 72:6892–6901

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Leid JG, Willson CJ, Shirtliff ME et al (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175:7512–7518

    Article  PubMed  CAS  Google Scholar 

  24. Roy S, Sun Y, Pearlman E (2011) Interferon-induced MD-2 protein expression and lipopolysaccharide (LPS) responsiveness in corneal epithelial cells is mediated by Janus tyrosine kinase-2 activation and direct binding of STAT1 protein to the MD-2 promoter. J Biol Chem 286:23753–23762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Kotenko SV, Gallagher G, Baurin VV et al (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4:69–77

    Article  PubMed  CAS  Google Scholar 

  26. Sheppard P, Kindsvogel W, Xu W et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4:63–68

    Article  PubMed  CAS  Google Scholar 

  27. Meager A, Visvalingam K, Dilger P et al (2005) Biological activity of interleukins-28 and -29: comparison with type I interferons. Cytokine 31:109–118

    Article  PubMed  CAS  Google Scholar 

  28. Maher SG, Sheikh F, Scarzello AJ et al (2008) IFNalpha and IFNlambda differ in their antiproliferative effects and duration of JAK/STAT signaling activity. Cancer Biol Ther 7:1109–1115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Sommereyns C, Paul S, Staeheli P, Michiels T (2008) IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 4:e1000017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Prince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cohen, T.S., Prince, A. (2014). Contribution of Interferon Signaling to Host Defense Against Pseudomonas aeruginosa . In: Parker, D. (eds) Bacterial Activation of Type I Interferons. Springer, Cham. https://doi.org/10.1007/978-3-319-09498-4_6

Download citation

Publish with us

Policies and ethics