Skip to main content

A Lower Bound for the Bergman Kernel and the Bourgain-Milman Inequality

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2116))

Abstract

For pseudoconvex domains in \(\mathbb{C}^{n}\) we prove a sharp lower bound for the Bergman kernel in terms of volume of sublevel sets of the pluricomplex Green function. For n = 1 it gives in particular another proof of the Suita conjecture. If \(\Omega \) is convex then by Lempert’s theory the estimate takes the form \(K_{\Omega }(z) \geq 1/\lambda _{2n}(I_{\Omega }(z))\), where \(I_{\Omega }(z)\) is the Kobayashi indicatrix at z. One can use this to simplify Nazarov’s proof of the Bourgain-Milman inequality from convex analysis. Possible further applications of Lempert’s theory in this area are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Berndtsson, Weighted estimates for the \(\overline{\partial }\)-equation, in Complex Analysis and Geometry, Columbus, Ohio, 1999. Ohio State Univ. Math. Res. Inst. Publ., vol. 9 (Walter de Gruyter, Berlin, 2001), pp. 43–57

    Google Scholar 

  2. Z. Błocki, A note on the Hörmander, Donnelly-Fefferman, and Berndtsson L 2-estimates for the \(\overline{\partial }\)-operator. Ann. Pol. Math. 84, 87–91 (2004)

    Article  MATH  Google Scholar 

  3. Z. Błocki, The Bergman metric and the pluricomplex Green function. Trans. Am. Math. Soc. 357, 2613–2625 (2005)

    Article  MATH  Google Scholar 

  4. Z. Błocki, Estimates for \(\bar{\partial }\) and optimal constants, in Complex Geometry, Abel Symposium 2013, Springer (to appear)

    Google Scholar 

  5. Z. Błocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem. Invent. Math. 193, 149–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bourgain, V. Milman, New volume ratio properties for convex symmetric bodies in \(\mathbb{R}^{n}\). Invent. Math. 88, 319–340 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-P. Demailly, Mesures de Monge-Ampère et mesures plurisousharmoniques. Math. Z. 194, 519–564 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Donnelly, C. Fefferman, L 2-cohomology and index theorem for the Bergman metric. Ann. Math. 118, 593–618 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Edigarian, On the product property of the pluricomplex Green function. Proc. Am. Math. Soc. 125, 2855–2858 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Herbort, The Bergman metric on hyperconvex domains. Math. Z. 232, 183–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Hörmander, L 2 estimates and existence theorems for the \(\bar{\partial }\) operator. Acta Math. 113, 89–152 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.-I. Hsin, The Bergman kernel on tube domains. Rev. Un. Mat. Argentina 46, 23–29 (2005)

    MathSciNet  MATH  Google Scholar 

  13. M. Jarnicki, P. Pflug, Invariant pseudodistances and pseudometrics - completeness and product property. Ann. Polon. Math. 55, 169–189 (1991)

    MathSciNet  MATH  Google Scholar 

  14. G. Kuperberg, From the Mahler conjecture to Gauss linking integrals. Geom. Funct. Anal. 18, 870–892 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France 109, 427–474 (1981)

    MathSciNet  MATH  Google Scholar 

  16. L. Lempert, Holomorphic invariants, normal forms, and the moduli space of convex domains. Ann. Math. 128, 43–78 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Nazarov, The Hörmander proof of the Bourgain-Milman theorem, in Geometric Aspects of Functional Analysis, Israel Seminar 2006–2010, ed. by B. Klartag, S. Mendelson, V.D. Milman. Lecture Notes in Mathematics, vol. 2050 (Springer, Berlin, 2012), pp. 335–343

    Google Scholar 

  18. O.S. Rothaus, Some properties of Laplace transforms of measures. Trans. Am. Math. Soc. 131, 163–169 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Suita, Capacities and kernels on Riemann surfaces. Arch. Ration. Mech. Anal. 46, 212–217 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Zając, Complex geodesics in convex tube domains, Ann. Scuola Norm. Sup. Pisa (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Błocki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Błocki, Z. (2014). A Lower Bound for the Bergman Kernel and the Bourgain-Milman Inequality. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116. Springer, Cham. https://doi.org/10.1007/978-3-319-09477-9_4

Download citation

Publish with us

Policies and ethics