Skip to main content

On Convergence of Blaschke and Minkowski Symmetrization Through Stability Results

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2116))

  • 1931 Accesses

Abstract

We show how existing results of stability for Brunn-Minkowski and related inequalities imply results regarding rate of convergences of Minkowski and Blaschke symmetrization processes to the Euclidean ball. To be more precise, the results imply that the amount of symmetrizations needed to approach the Euclidean ball within some distance ε, a polynomial number of symmetrizations (in the dimension and \(\frac{1} {\epsilon }\)) suffice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.D. Alexandrov, Extension of two theorems of Minkowski on convex to arbitrary convex bodies. Mat. Sb. (N.S.) 3, 27–46 (1938) (Russian)

    Google Scholar 

  2. A.D. Alexandrov, On the surface area function of a convex body. Mat. Sb. (N.S.) 6, 167–174 (1939) (Russian)

    Google Scholar 

  3. G. Averkov, E. Makai, H. Martini, Characterizations of Central Symmetry for Convex Bodies in Minkowski Spaces. Stud. Sci. Math. Hung. 46(4), 493–514 (2009)

    MathSciNet  MATH  Google Scholar 

  4. D. Bucur, I. Fragal, J. Lamboley, Optimal convex shapes for concave functionals. Control Optim. Calc. Var. 18(3), 693–711 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bourgain, J. Lindenstrauss, V.D. Milman, Minkowski sums and symmetrizations. Geometric Aspects of Functional Analysis - Israel Seminar (1986–87), ed. by J. Lindenstrauss, V.D. Milman. Lecture Notes in Mathematics, vol. 1317 (Springer, Berlin, 1988), pp. 44–66

    Google Scholar 

  6. V.I. Diskant, Stability of the solution of a Minkowski equation (Russian). Sibirsk. Mat. Z. 14, 669–673, 696 (1973)

    Google Scholar 

  7. W. Fenchel, B. Jessen, Mengenfunktionen und konvexe K’orper. Danske Vid. Se1skab. Mat.-Fys. Medd. 16, 1–31 (1938)

    Google Scholar 

  8. A. Figalli, F. Maggi, F. Pratelli, A refined Brunn-Minkowski inequality for convex sets. Ann. Inst. H. Poincaré Anal. Non Linaire 26(6), 2511–2519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Figalli, F. Maggi, F. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Gardner, Geometric Tomography, 2nd edn. (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  11. A.A. Giannopoulos, V.D. Milman, Euclidean structure in finite dimensional, in Normed Spaces, ed. by W.B. Johnson, J. Lindenstrauss. Handbook of the Geometry of Banach Spaces, vol. 1 (Elsevier, Amsterdam, 2001), pp. 707–779

    Google Scholar 

  12. H. Groemer, On the symmetric difference metric for convex bodies. Contrib. Algebra Geom. 41(1), 107–114 (2000)

    MathSciNet  MATH  Google Scholar 

  13. S. Ivanov, private communication (2013)

    Google Scholar 

  14. B. Klartag, Rate of convergence of geometric symmetrization. Geom. and Funct. Anal. 14(6) 1322–1338 (2004)

    Article  MathSciNet  Google Scholar 

  15. C.M. Petty, Projection bodies, in Proc. Coll. Convexity (Copenhagen 1965), Kobenhavns Univ. Mat. Inst. (1967), pp. 234–241

    Google Scholar 

  16. A. Segal, Remark on stability of Brunn-Minkowski and isoperimetric inequalities for convex bodies, in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 2050 (Springer, Heidelberg, 2012), pp. 381–391

    Google Scholar 

  17. R. Schneider, Zur einem Problem von Shephard uber die Projektionen konvexer Korper. Math. Z. 101, 71–82 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Schneider, Ueber eine Integralgleichung in der Theorie der konvexen Koerper. Math. Nachr. 44, 55–75 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Schneider, Convex Bodies: The Brunn Minkowski Theorey (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  20. H. Zouaki, Convex set symmetry measurement using Blaschke addition. Pattern Recognit. 36(3), 753–763 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank professor Sergei Ivanov for providing the main ideas for the proofs of Lemmas 2.4 and 5.2 and professor Vitali Milman for useful advice. The author was partially supported by the ISF grant no. 387/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Segal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Segal, A. (2014). On Convergence of Blaschke and Minkowski Symmetrization Through Stability Results. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116. Springer, Cham. https://doi.org/10.1007/978-3-319-09477-9_29

Download citation

Publish with us

Policies and ethics