Skip to main content

A Remark on the Diameter of Random Sections of Convex Bodies

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2116))

Abstract

We obtain a new upper estimate on the Euclidean diameter of the intersection of the kernel of a random matrix with iid rows with a given convex body. The proof is based on a small-ball argument rather than on concentration and thus the estimate holds for relatively general matrix ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will abuse notation and not distinguish between the measure μ and the random vector X that has μ as its law.

References

  1. S.G. Bobkov, F.L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1807, (2003), pp. 53–69

    Google Scholar 

  2. R.M. Dudley, Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics, vol. 63 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  3. E. Giné, J. Zinn, Some limit theorems for empirical processes. Ann. Probab. 12(4), 929–989 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Koltchinskii, S. Mendelson, Bounding the smallest singular value of a random matrix without concentration. Preprint

    Google Scholar 

  5. M. Ledoux, M. Talagrand, Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 23 (Springer, Berlin, 1991)

    Google Scholar 

  6. S. Mendelson, On the geometry of subgaussian coordinate projections. Preprint

    Google Scholar 

  7. S. Mendelson, Learning without concentration. Preprint

    Google Scholar 

  8. S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Reconstruction and subgaussian operators. Geom. Funct. Anal. 17, 1248–1282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Mendelson, G. Paouris, On generic chaining and the smallest singular values of random matrices with heavy tails. J. Funct. Anal. 262(9), 3775–3811 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Mendelson, G. Paouris, On the singular values of random matrices. J. Eur. Math. Soc. 16(4), 823–834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Milman, Random subspaces of proportional dimension of finite dimensional normed spaces: approach through the isoperimetric inequality. Lect. Notes Math. 1166, 106–115 (1985)

    Article  MathSciNet  Google Scholar 

  12. A. Pajor, N. Tomczak-Jaegermann, Subspaces of small codimension of finite-dimensional Banach spaces, Proc. Am. Math. Soc. 97(4), 637–642 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Pajor, N. Tomczak-Jaegermann, Nombres de Gelfand et sections euclidiennes de grande dimension. (French) (Gelfand numbers and high-dimensional Euclidean sections). Séminaire d’Analyse Fonctionelle 1984/1985, Publ. Math. Univ. Paris VII, 26, Univ. Paris VII, Paris (1986), pp. 37–47

    Google Scholar 

  14. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  15. A.W. Van der Vaart, J.A. Wellner, Weak Convergence and Empirical Processes (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  16. M. Talagrand, The supremum of some canonical processes. Am. J. Math. 116, 283–325 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Talagrand, Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems (Springer, Berlin, 2014)

    Book  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the Mathematical Sciences Institute – The Australian National University and by the Israel Science Foundation grant 900/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahar Mendelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mendelson, S. (2014). A Remark on the Diameter of Random Sections of Convex Bodies. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116. Springer, Cham. https://doi.org/10.1007/978-3-319-09477-9_25

Download citation

Publish with us

Policies and ethics