Skip to main content

Logarithmically-Concave Moment Measures I

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2116))

Abstract

We discuss a certain Riemannian metric, related to the toric Kähler-Einstein equation, that is associated in a linearly-invariant manner with a given log-concave measure in \(\mathbb{R}^{n}\). We use this metric in order to bound the second derivatives of the solution to the toric Kähler-Einstein equation, and in order to obtain spectral-gap estimates similar to those of Payne and Weinberger.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Abreu, Kähler geometry of toric manifolds in symplectic coordinates, in Symplectic and Contact Topology: Interactions and Perspectives. Fields Institute Communications, vol. 35 (American Mathematical Society, Providence, 2003), pp. 1–24

    Google Scholar 

  2. S. Alesker, S. Dar, V. Milman, A remarkable measure preserving diffeomorphism between two convex bodies in \(\mathbb{R}^{n}\). Geom. Dedicata 74(2), 201–212 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bakry, On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, in New trends in stochastic analysis (Charingworth, 1994) (World Scientific, River Edge, 1997), pp. 43–75

    Google Scholar 

  4. D. Bakry, M. Émery, Diffusions hypercontractives, in Séminaire de Probabilités, XIX, 1983/84. Springer Lecture Notes in Mathematics, vol. 1123 (1985), pp. 177–206

    Google Scholar 

  5. R.J. Berman, B. Berndtsson, Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties. Ann. Fac. Sci. Toulouse Math. (6) 22(4), 649–711 (2013)

    Google Scholar 

  6. L. Berwald, Verallgemeinerung eines Mittelwertsatzes von J. Favard, für positive konkave Funktionen. Acta Math. 79, 17–37 (1947)

    Google Scholar 

  7. C. Borell, Complements of Lyapunov’s inequality. Math. Ann. 205, 323–331 (1973)

    MathSciNet  MATH  Google Scholar 

  8. H.J. Brascamp, E.H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Caffarelli, The regularity of mappings with a convex potential. J. Am. Math. Soc. 5, 99–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities. Commun. Math. Phys. 214(3), 547–563 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Caffarelli, Erratum: “Monotonicity of optimal transportation and the FKG and related inequalities”. Commun. Math. Phys. 225(2), 449–450 (2002)

    Article  MathSciNet  Google Scholar 

  12. D. Cordero-Erausquin, B. Klartag, Moment measures. Preprint. arXiv:1304.0630

    Google Scholar 

  13. S.K. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, in Handbook of Geometric Analysis. Advanced Lectures in Mathematics (ALM), vol. 7, No. 1 (International Press, Somerville, 2008), pp. 29–75

    Google Scholar 

  14. M. Fradelizi, Sections of convex bodies through their centroid. Arch. Math. 69(6), 515–522 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Grigor’yan, Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47 (American Mathematical Society/International Press, Providence/Boston, 2009)

    Google Scholar 

  16. O. Kallenberg, Foundation of Modern Probability, 2nd edn. Probability and Its Applications (New York) (Springer, New York, 2002)

    Book  Google Scholar 

  17. R. Kannan, L. Lovász, M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13(3–4), 541–59 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Klartag, Marginals of geometric inequalities, in Geometric Aspects of Functional Analysis. Springer Lecture Notes in Mathematics, vol. 1910 (2007), pp. 133–166

    Google Scholar 

  19. B. Klartag, Uniform almost sub-gaussian estimates for linear functionals on convex sets. Algebra i Analiz (St. Petersburg Math. J.) 19(1), 109–148 (2007)

    Google Scholar 

  20. B. Klartag, Poincaré inequalities and moment maps. Ann. Fac. Sci. Toulouse Math., 22(1), 1–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Klartag, A.V. Kolesnikov, Eigenvalue distribution of optimal transportation. Preprint arXiv:1402.2636

    Google Scholar 

  22. A.V. Kolesnikov, On Sobolev regularity of mass transport and transportation inequalities. Theory Probab. Appl. 57(2), 243–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. A.V. Kolesnikov, Hessian metrics, CD(K, N)-spaces, and optimal transportation of log-concave measures. Discrete Contin. Dyn. Syst. 34(4), 1511–1532 (2014)

    Google Scholar 

  24. B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, 6th edn. Universitext (Springer, Berlin, 2003)

    Google Scholar 

  25. L.E. Payne, H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  26. R.T. Rockafellar, Convex Analysis. Princeton Mathematical Series, No. 28 (Princeton University Press, Princeton, 1970)

    Google Scholar 

  27. L. Saloff-Coste, Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Note Series, vol. 289 (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  28. J. Urbas, On the second boundary value problem for equations of Monge-Ampère type. J. Reine Angew. Math. 487, 115–124 (1997)

    Google Scholar 

  29. X.-J. Wang, X. Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, 87–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Bo Berndtsson, Dario Cordero-Erausquin, Ronen Eldan, Alexander Kolesnikov, Eveline Legendre, Emanuel Milman, Ron Peled, Yanir Rubinstein and Boris Tsirelson for interesting discussions related to this work. Supported by a grant from the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo’az Klartag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klartag, B. (2014). Logarithmically-Concave Moment Measures I. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116. Springer, Cham. https://doi.org/10.1007/978-3-319-09477-9_16

Download citation

Publish with us

Policies and ethics