Skip to main content

Identifying Set Inclusion by Projective Positions and Mixed Volumes

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2116))

  • 1896 Accesses

Abstract

We study a few approaches to identify inclusion (up to a shift) between two convex bodies in \(\mathbb{R}^{n}\). To this goal we use mixed volumes and fractional linear maps. We prove that inclusion may be identified by comparing volume or surface area of all projective positions of the sets. We prove similar results for Minkowski sums of the sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    D.I. Florentin was partially supported by European Research Council grand Dimension 305629.

References

  1. S. Artstein-Avidan, D. Florentin, V.D. Milman, Order Isomorphisms on Convex Functions in Windows. GAFA Lecture Notes in Mathematics, vol. 2050 (Springer, Berlin, 2012), pp. 61–122

    Google Scholar 

  2. T. Bonnesen, W. Fenchel, Theory of Convex Bodies (BCS Associates, Moscow, 1987). Translated from the German and edited by L. Boron, C. Christenson and B. Smith

    Google Scholar 

  3. G.D. Chakerian, E. Lutwak, On the Petty-Schneider theorem. Contemp. Math. 140, 31–37 (1992)

    Article  MathSciNet  Google Scholar 

  4. C. Chen, T. Khovanova, D. Klain, Volume bounds for shadow covering. Trans. Am. Math. Soc. 366(3), 1161–1177 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. R.J. Gardner, A. Koldobsky, T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. Math. Second Ser. 149(2), 691–703 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Koldobsky, Intersection bodies, positive definite distributions, and the Busemann-Petty problem. Am. J. Math. 120(4), 827–840 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Lutwak, Containment and circumscribing simplices. Discrete Comput. Geom. 19, 229–235 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. C.M. Petty, Projection bodies, in Proc. Colloquium on Convexity, Copenhagen, 1965 (Københavns Univ. Mat. Inst., Copenhagen, Denmark, 1967), pp. 234–241

    Google Scholar 

  9. R. Schneider, Zur einem Problem von Shephard über die Projektionen Konvexer Körper. Math. Z. 101, 71–82 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Schneider, Additive Transformationen Konvexer Körper. Geom. Dedicata 3, 221–228 (1974)

    MATH  Google Scholar 

  11. R. Schneider, Convex Bodies: The Brunn Minkowski Theory. Second Expanded Edition. Encyclopedia of Mathematics and its Applications, vol. 151 (Cambridge University Press, Cambridge, 2014).

    Google Scholar 

  12. W. Weil, Decomposition of convex bodies. Mathematika 21, 19–25 (1974)

    Article  MathSciNet  Google Scholar 

  13. G. Zhang, A positive solution to the Busemann-Petty problem in \(\mathbb{R}^{4}\). Ann. Math. Second Ser. 149(2), 535–543 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitali Milman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Florentin, D., Milman, V., Segal, A. (2014). Identifying Set Inclusion by Projective Positions and Mixed Volumes. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116. Springer, Cham. https://doi.org/10.1007/978-3-319-09477-9_11

Download citation

Publish with us

Policies and ethics