Skip to main content

The Objectives and Priorities for the Azorean Dairy Farmers’ Decisions

  • Chapter
  • First Online:
The Agricultural Economics of the 21st Century

Abstract

The single objective—profit maximization—has been the classical and neoclassic model for farmer’s decision making. Nowadays, it is recognized that other and conflictual objectives are important concerns to the process, making the multi-criteria methodologies more suitable to the agricultural reality. This chapter aims to identify and find the objectives and priorities of the Azorean dairy farmer’s decision making. The proposed methodology is based on multi-criteria models, by simulation of the dairy farmers’ behavior through data of the Farm Accountancy Data Network. This allows to define a surrogate utility function for a dairy farm typology, regarding the different grazing systems. Five main objectives were previously considered: profit maximization, risk minimization, labor seasonality minimization, leisure maximization, and also deviations to the goal of total labor minimization. The results show that in any group of Azorean dairy farms, the decision making process seems to be influenced by three conflictual objectives: profit maximization, labor seasonality, and risk minimization. Also, the farms’ objectives depend on the intensity of grazing systems and by other socioeconomic factors. That is, farmers’ behavior is not always explained by profit (exception in the low intensity grazing systems), which is unusual under the traditional paradigm. Some explanations may be appointed for this situation and one is related to the dairy farms income that can be enough to maintain the farm and family income. If the economic objectives are satisfied, then the farmers can have other priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akkal-Corfini, N., López-Ridaura, S., Walter, C., Menasseri-Aubry, S., & Bissuel-Belaygue, C. (2007). Integrated analysis of vegetable farming systems. The case of Bretagne, West of France. In M. Donatelli, J. Hatfield, & A. Rizzoli (Eds.), Farming Systems Design 2007, International Symposium on Methodologies on Integrated Analysis on Farm Production Systems (pp. 131–132). 10–12 September 2007, Catania (Italy), Book 2 – Field-farm Scale Design and Improvement.

    Google Scholar 

  • Amador, F., Sumpsi, J., & Romero, C. (1998). A non-interactive methodology to assess farmer’s utility functions: An application to large farms in Andalusia, Spain. European Review of Agricultural Economics, 25, 92–109.

    Article  Google Scholar 

  • Antoine, J., Fischer, G., & Makowski, M. (1997). Multiple criteria land use analysis. Applied Mathematics and Computation, 83, 195–215.

    Article  Google Scholar 

  • Bartlett, E. T., & Clawson, W. J. (1978). Profit, meat production or efficient use of energy in ranching. Journal of Animal Science, 46(3), 812–818.

    Google Scholar 

  • Bartolini, F., Bazzani, G. M., Gallerani, V., Raggi, M., & e Viaggi, D. (2007). The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models. Agricultural Systems, 93, 90–114.

    Article  Google Scholar 

  • Berbel, J., & Barros, M. (1993). Planificación Multicritério de Empresas Agroganaderas con Bovino de Leche de Islas Azores (Portugal). Invest. agr. Econ, 8(2), 197–208. (Multicriteria management of dairy farms in the Azores islands)

    Google Scholar 

  • Berbel, J., Cañas, J., Gómez-Limón, J., López, M., & Arriaza, M. (1999). Micromodelos de Gestión de Agua de Riego, análisis del Impacto socioeconómico y ambiental de una política de precios. Córdoba: Editorial Vistalegre, ISBN: 968-839-544-7 (Micromodels of water management, analysis of socioeconomics and environmental impacts of a prices policy).

    Google Scholar 

  • Berbel, J., & Rodríguez-Ocaña, A. (1998). An MCDM approach to production analysis: an application to irrigated farms in southern Spain. European Journal of Operational Research, 107, 108–118.

    Article  Google Scholar 

  • Bergevoet, R., Ondersteijn, C., Saatkamp, H., Van Woerkum, C., & Huirne, R. (2004). Entrepreneurial behaviour of Dutch dairy farmers under a milk quota system: Goals, objectives and attitudes. Agricultural Systems, 80(1), 1–21.

    Article  Google Scholar 

  • Carvalho, N. S. (2006). Agricultura Sustentável em Regadio e o seu Planeamento Face aos Desafios Económicos, Sociais e Ambientais (O Caso da Futura Zona Irrigada de Intervenção de Alqueva). In Actas do 5° Congresso Ibérico “Gestão e Planeamento de Água”. 4–8 December 2006, University of Algarve - Faro, 10 p.

    Google Scholar 

  • Carvalho, N. S. (2007). O Planeamento Agrícola Face aos Actuais Desafios Ambientais, Sociais e Económicos (Uma Aplicação da Programação por Metas Lexicográficas ao Caso da Futura Zona de Regadio de Intervenção de Alqueva). In Actas do V Congresso Nacional da Associação Portuguesa de Economia Agrária “Globalização, Agricultura e Áreas Rurais”. 4–6 October 2007, UTAD - Vila Real, 10 p.

    Google Scholar 

  • Cohon, J. L. (1978). Multiobjective programming and planning (Mathematics in science and engineering, Vol. 140). San Diego, CA: Academic Press.

    Google Scholar 

  • Diaz-Balteiro, L., & Romero, C. (2004a). In search of a natural systems sustainability index. Ecological Economics, 49, 401–405.

    Article  Google Scholar 

  • Diaz-Balteiro, L., & Romero, C. (2004b). Sustainability of forest management plans: A discrete goal programming approach. Journal of Environmental Management, 71, 351–359.

    Article  Google Scholar 

  • Dunn, E. G., Keller, J. M., & Marks, L. A. (1998). Integrated decision making for sustainability: A fuzzy MADM model for agriculture. In: S. A. El-Swaify & D. S. Yakowitz (Eds.), Multiple objective decision making for land, water, and environmental management. Proceedings of the First International Conference on Multiple Objective Decision Support Systems (MODSS) for Land, Water, and Environmental Management: Concepts, Approaches, and Applications (pp. 313–322). Florence, KY: Lewis Publishers.

    Google Scholar 

  • El-Gayar, O. F., & Leung, P. (2001). A multiple criteria decision making framework for regional aquaculture development. European Journal of Operational Research, 133, 462–482.

    Article  Google Scholar 

  • Flury, C., Gotsch, N., & Rieder, P. (2000). The effects of alternative direct payment regimes on ecological and socio-economic indicators: Results of a spatial linear programming model for a Swiss Alpine region. In Proceedings of Fourth International Conference on Chain Management in Agribusiness and the Food Industry, 24–26 May, Wageningen, 9 p.

    Google Scholar 

  • Gómez-Limón J., & Berbel J. (1995). Aplicación de una Metodología Multicritério para la Estimación de los Objetivos de los Agricultores del Regadío Cordobés. Invest. agr. Econ, 10(1), 103–123 (Application of a multicriteria methodology to estimate the objectives of Cordoba farmers).

    Google Scholar 

  • Gómez-Limón, J. A., & Berbel, J. (2000). Multicriteria analysis of derived water demand functions: A Spanish case study. Agricultural Systems, 63, 49–72.

    Article  Google Scholar 

  • Groot, J., Rossing, W., Jellema, A., Stobbelaar, D., Renting, H., & Van Ittersum, M. (2007). Exploring multi-scale trade-offs between nature conservation, agricultural profits and landscape quality – A methodology to support discussions on land-use perspectives. Agriculture, Ecosystems and Environment, 120, 58–69.

    Article  Google Scholar 

  • Heilman, P., Yakowitz, D. S., & Lane, L. J. (1997). Targeting farms to improve water quality. Applied Mathematics and Computation, 83, 173–194.

    Article  Google Scholar 

  • IFAP (Instituto de Financiamento da Agricultura e Pescas). (2012). Regime de Imposição sobre os Excedentes no Leite (Quotas Leiteiras). Retrieved September 10, 2012 from http://www.ifap.min-agricultura.pt/portal/page/portal/ifap_publico/GC_quotleite

  • INE (Instituto Nacional de Estatística). (2009). Estatísticas Agrícolas 2008. Retrieved September 17, 2012 from http://www.ine.pt/

  • INE (Instituto Nacional de Estatística). (2011). Recenseamento Agrícola 2009. Análise dos principais resultados. Retrieved September 17, 2012 from: http://www.ine.pt/

  • INRA (Institut National de la Recherche Agronomique). (1988). In R. Jarrige (Ed.), Alimentation des bovins, ovins & caprins. Paris: INRA; ISBN 2-7380-0021-5. (Feeding bovines, sheep and goat).

    Google Scholar 

  • Keeney, R., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: Wiley. ISBN 0521438837.

    Google Scholar 

  • Köbrich, C., & Rehman, T. (1998). Sustainable agriculture and the MCDM paradigm: The development of compromise programming models with special reference to small-scale farmers in Chile’s VIth Region. In S. A. El-Swaify, & D. S. Yakowitz (Eds.), Multiple Objective decision making for land, water, and environmental management. Proceedings of the First International Conference on Multiple Objective Decision Support Systems (MODSS) for Land, Water, and Environmental Management: Concepts, Approaches, and Applications (pp. 557–569). Florence, KY: Lewis Publishers.

    Google Scholar 

  • Lakshminarayan, P. G., Johnson, S. R., & Bouzaher, A. (1995). A multi-objective approach to integrating agricultural economic and environmental policies. Journal of Environmental Management, 45, 365–378.

    Article  Google Scholar 

  • Latinopoulos, D. (2007). Multicriteria decision-making for efficient water and land resources allocation in irrigated agriculture. Environment, Development and Sustainability. doi:10.1007/s10668-007-9115-2. Retrieved from: http://www.springerlink.com/content/v8j2h44j4w02g443.

    Google Scholar 

  • Mardle, S., Pascoe, S., Tamiz, M., & Jones, D. (2000). Resource allocation in the North Sea demersal fisheries: a goal programming approach. Annals of Operations Research, 94, 321–342.

    Article  Google Scholar 

  • Marta-Costa, A. (2008). A Tomada da Decisão no Planeamento da Exploração Agrária no Contexto da Sustentabilidade: o caso da Produção de Carne Bovina Maronesa. PhD Thesis, vol. I. UTAD: Vila Real.

    Google Scholar 

  • Marta-Costa, A. A. (2010). Application of decision support methods for sustainable agrarian systems. New Medit, IX(2), 42–49.

    Google Scholar 

  • Marta-Costa, A. A., Manso, F., Tibério, L., & Fonseca, C. (2013). Ecological-economic modelling for farming systems of Montemuro Mountain (Portugal). In: A. Marta-Costa, & E. Silva (Eds.), Methods and procedures for building sustainable farming systems: Application in the European context (Chapter 6, pp. 207–217). New York: Springer, ISBN 978-94-007-5003-6 (eBook); ISBN 978-94-007-5002-9 (Hardcover).

    Google Scholar 

  • Meyer-Aurich, A. (2005). Economic and environmental analysis of sustainable farming practices – A Bavarian case study. Agricultural Systems, 86, 190–206.

    Article  Google Scholar 

  • Mimouni, M., Zekri, S., & Flichman, G. (2000). Modelling the trade-offs between farm income and the reduction of erosion and nitrate pollution. Annals of Operations Research, 94, 91–103.

    Article  Google Scholar 

  • Neely, W. P., North, R. M., & Fortson, J. C. (1977). An operational approach to multiple objective decision making for public water resources projects using integer goal programming. American Journal of Agricultural Economics, 59(1), 198–203.

    Article  Google Scholar 

  • Nibbering, J. W., & Van Rheenen, T. (1998). The development of a quantitative method for setting research priorities: A critical assessment. Agricultural Systems, 56(2), 145–165.

    Article  Google Scholar 

  • Poeta, A. (1994). A Tomada de Decisão no Planeamento da Exploração Agrícola num Contexto de Objectivos Múltiplos. PhD Thesis. UTAD: Vila Real.

    Google Scholar 

  • Prathapar, S. A., Meyer, W. S., & Madden, J. C. (1997). SWAGMAN options: A hierarchical multicriteria framework to identify profitable land uses that minimize water table rise and salinization. Applied Mathematics and Computation, 83, 217–240.

    Article  Google Scholar 

  • Raju, K. S., Duckstein, L., & Arondel, C. (2001). Multicriterion analysis for sustainable water resources planning: A case study in Spain. Water Resources Management, 14, 435–456.

    Article  Google Scholar 

  • Raju, K. S., & Vasan, A. (2007). Multi attribute utility theory for irrigation system evaluation. Water Resources Management, 21, 717–728.

    Article  Google Scholar 

  • Rehman, T., & Romero, C. (1987). Goal programming with penalty functions and livestock ration formulation. Agricultural Systems, 23, 117–132.

    Article  Google Scholar 

  • Riesgo, L., & Goméz-Limón, J. A. (2006). Multi-criteria policy scenario analysis for public regulation of irrigated agriculture. Agricultural Systems, 91, 1–28.

    Article  Google Scholar 

  • Rodríguez Ocaña, A. (1996). Propuesta Metodológica para el Análisis de la toma de Decisión de los Agricultores: Aplicación al caso de Regadío Extensivo Cordobés. PhD Thesis. Escuela Técnica Superior Ingenieros Agrónomos y Montes, Universidad de Córdoba.

    Google Scholar 

  • Romero, C. (1993). Teoria de la Decisión Multicriterio: Conceptos, Técnicas y Aplicaciones. Madrid: Alianza Editorial.

    Google Scholar 

  • Romero, C., & Rehman, T. (1989). Multiple criteria analysis for agricultural decisions (Developments in Agricultural Economics, Vol. 5). Amsterdam: Elsevier. ISBN 0-444-87408-9.

    Google Scholar 

  • Rozakis, S., Sourie, J.-C., & Vanderpooten, D. (2001). Integrated micro-economic modelling and multi-criteria methodology to support public decision-making: The case of liquid bio-fuels in France. Biomass and Bioenergy, 20, 385–398.

    Article  Google Scholar 

  • Shakya, K. M., & Leuschner, W. A. (1990). A multiple objective land use planning model for Nepalese hills farms. Agricultural Systems, 34, 133–149.

    Article  Google Scholar 

  • Silva, E. (2001). Análisis Multicriterio da la Eficiência Económica de las Explotaciones Agroganaderas de las Azores (Portugal). PhD Thesis. Universidad de Córdoba.

    Google Scholar 

  • Silva, E., & Berbel, J. (2004). A decision support model for dairy farms. Quality assurance, risk management and environmental control in agriculture and food supply networks (Vol. B, pp. 583–591). Bonn: Universitat Bonn-ILB.

    Google Scholar 

  • Silva, E., & Berbel, J. (2006). An Azorean farms typology. New Medit, VI(1), 51–54.

    Google Scholar 

  • Silvestri, N., Andreoli, M., & Bellocchi, G. (2007). Assessing Agricultural management via multi-criteria analysis: Case-study on maize systems. In: M. Donatelli, J. Hatfield, A. Rizzoli (Eds.), Farming systems design 2007, Int. Symposium on Methodologies on Integrated Analysis on Farm Production Systems. 10–12 September 2007, Catania (Italy), book 2 – Field-farm Scale Design and Improvement, pp. 189–190.

    Google Scholar 

  • Solano, C., León, H., Pérez, E., & Herrero, M. (2001). Characterising objective profiles of Costa Rican dairy farmers. Agricultural Systems, 67(1), 153–179.

    Article  Google Scholar 

  • Sumpsi, J., Amador, F., & Romero, C. (1996). On farmer’s objectives: A multicriteria approach. European Journal of Operational Research, 96, 64–71.

    Article  Google Scholar 

  • Tauer, L. (1995). Do New York dairy farmers maximize profits or minimize cost? American Journal Agricultural Economics, 77, 421–429.

    Article  Google Scholar 

  • Thankappan, S., Midmore, P., & Jenkins, T. (2006). Conserving energy in smallholder agriculture: A multi-objective programming case-study of Northeast India. Ecological Economics, 56, 190–208.

    Article  Google Scholar 

  • Tiwari, D. N., Loof, R., & Paudyal, G. N. (1999). Environmental-economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques. Agricultural Systems, 60, 99–112.

    Article  Google Scholar 

  • Van Huylenbroeck, G. (1997). Multicriteria tools for the trade-off analysis in rural planning between economic and environmental objectives. Applied Mathematics and Computation, 83, 261–280.

    Article  Google Scholar 

  • Willet, K., Zhang, T., Mcternan, W., Sharda, R., & Rossman, E. (1997). Regulation of pesticide discharge into surface and groundwater under uncertainty: A model for environmental risk-profitability tradeoffs and policy selection. Environmental Modeling and Assessment, 2, 211–220.

    Article  Google Scholar 

  • Zander, P., & Kächele, H. (1999). Modelling multiple objectives of land use for sustainable development. Agricultural Systems, 59, 311–325.

    Article  Google Scholar 

  • Zekri, S., & Romero, C. (1991). Influencia de las Preferências del Centro Decisor y de los Incentivos Economicos en la Reduccion de la Contaminación por Sales. Invest. Agr. Econ, 6(2), 223–239 (Influence of decision making preferences and economic incentives in reducing pollution).

    Google Scholar 

  • Zekri, S., & Romero, C. (1993). Public and private compromises in agricultural water management. Journal of Environmental Management, 37, 281–290.

    Article  Google Scholar 

  • Zeleny, M. (1982). Multiple criteria decision making (McGraw-Hill Series in Quantitative Methods for Management, 563 p.). New York: McGraw-Hill.

    Google Scholar 

  • Zhang, Q., Maeda, S., & Kawachi, T. (2007). Stochastic multiobjective optimization model for allocating irrigation water to paddy fields. Paddy Water Environment, 5, 93–99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Alexandra Marta-Costa .

Editor information

Editors and Affiliations

Appendix

Appendix

$$ \mathrm{Objective}\ (1):\kern1em \mathrm{MAX}\ \mathrm{MB}=\mathrm{MAX}{\displaystyle \sum_{i=1}^{15}{X}_i{\mathrm{MB}}_i},\kern1em \mathrm{Objective}\ (2):\kern1em \mathrm{MIN}\ \mathrm{MOTAD}=\mathrm{MIN}{\displaystyle \sum_{k=1}^7{N}_k} $$
$$ \mathrm{Objective}\ (3):\kern1em \mathrm{MIN}\ \mathrm{EST}=\mathrm{MIN}{\displaystyle \sum_{j=1}^6{n}_j+{p}_j} $$
$$ \mathrm{Objective}\ (4):\kern1em \mathrm{MIN}\ \mathrm{MO}=\mathrm{MIN}\ {\displaystyle \sum_{i=1}^{15}{X}_i{\mathrm{MO}}_i} $$
$$ \mathrm{Objective}\ (5):\kern1em \mathrm{MIN}\ \mathrm{DMMO}=\mathrm{MIN}\ {\displaystyle \sum_{i=1}^{15}{n}_{1j}+{p}_{1j}} $$
$$ \mathrm{Constraint}\ (1):\kern1em {X}_1\le {S}_A $$
$$ \mathrm{Constraint}\ (2):\kern1em {X}_2+{X}_3+{X}_4+\frac{1}{2}{X}_8+\frac{1}{4}\left({X}_{10}+{X}_{12}\right)\le {S}_M $$
$$ \mathrm{Constraint}\ (3):\kern1em {X}_5+{X}_6+{X}_7+\frac{1}{2}{X}_9+\frac{1}{4}\left({X}_{11}+{X}_{13}\right)\le {S}_B $$
$$ \mathrm{Constraint}\ (4):\kern1em {S}_A+{S}_M+{S}_B\le {S}_T $$
$$ \mathrm{Constraint}\ (5):\kern1em {X}_8+{X}_9\le 0.2\left({S}_M+{S}_B\right) $$
$$ \mathrm{Constraint}\ (6):\kern1em {X}_{10}+{X}_{11}\le {X}_8 $$
$$ \mathrm{Constraint}\ (7):\kern1em {X}_{11}+{X}_{13}\le {X}_9 $$
$$ \mathrm{Constraint}\ (8):\kern1em {\displaystyle \sum_{i=1}^{15}\left({\mathrm{MO}}_j{X}_i\right)+{n}_j-{p}_j=\overline{{\mathrm{MO}}_{dj},}\kern0.5em j=1,\dots, 6} $$
$$ \mathrm{Constraint}\ (9):\kern1em {\displaystyle \sum_{i=1}^{15}\left({\mathrm{MO}}_j{X}_i\right)={{\mathrm{MO}}_{dj}}_{{}_j},\kern0.5em j=1,\dots, 6} $$
$$ \mathrm{Constraint}\ (10):\kern1em {\displaystyle \sum_{i=1}^{15}\left({\mathrm{MB}}_{ik}{X}_i-\overline{{\mathrm{MB}}_{ik}}\right)+{N}_k-{P}_k=0,\kern0.5em k=1,\dots, 7} $$
$$ \mathrm{Constraint}\ (11):\kern1em {\displaystyle \sum_{i=1}^{15}{\mathrm{MB}}_i{X}_i\ge 3107} $$
$$ \mathrm{Constraint}\ (12):\kern1em {\displaystyle \sum_{j=1}^6{\displaystyle \sum_{i=1}^{14}{\mathrm{UFL}}_{ij}{\mathrm{MS}}_{ij}{X}_i\ge {\displaystyle \sum_{j=1}^6{\mathrm{UFL}}_{15j}{X}_{15}}}} $$
$$ \mathrm{Constraint}\ (13):\kern1em {\displaystyle \sum_{j=1}^6{\displaystyle \sum_{i=1}^{14}{\mathrm{PDIE}}_{ij}{{\mathrm{MS}}_{ij}}_{{}_i}\ge {\displaystyle \sum_{j=1}^6{\mathrm{PDIE}}_{15j}{X}_{15}}}} $$
$$ \mathrm{Constraint}\ (14):\kern1em {\displaystyle \sum_{j=1}^6{\displaystyle \sum_{i=1}^{14}{\mathrm{PDIN}}_{ij}{\mathrm{MS}}_{ij}{X}_i\ge {\displaystyle \sum_{j=1}^6{\mathrm{PDIN}}_{15j}{X}_{15}}}} $$
$$ \mathrm{Constraint}\ (15):\kern1em {\displaystyle \sum_{j=1}^6{\displaystyle \sum_{i=1}^{14}{\mathrm{CA}}_{ij}{\mathrm{MS}}_{ij}{X}_i\ge {\displaystyle \sum_{j=1}^6{\mathrm{CA}}_{15j}{X}_{15}}}} $$
$$ \mathrm{Constraint}\ (16):\kern1em {\displaystyle \sum_{j=1}^6{\displaystyle \sum_{i=1}^{14}{P}_{ij}{\mathrm{MS}}_{ij}{X}_i\ge {\displaystyle \sum_{j=1}^6{P}_{15j}{X}_{15}}}} $$
$$ \mathrm{Constraint}\ (17):\kern1em {\displaystyle \sum_{i=1}^{14}{\mathrm{MS}}_i{X}_i\ge {\mathrm{MS}}_{15}{X}_{15}} $$
$$ \mathrm{Constraint}\ (18):\kern1em {X}_{14}-547,7{X}_{15}=0 $$
$$ \mathrm{Constraint}\ (19):\kern1em {X}_{15}-1.4{\displaystyle \sum_{i=1}^{13}{X}_i\le 0} $$
$$ \mathrm{Constraint}\ (20):\kern1em {X}_i\ge 0,\ i=1,2,\dots, 15 $$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silva, E., Marta-Costa, A.A., Berbel, J. (2015). The Objectives and Priorities for the Azorean Dairy Farmers’ Decisions. In: Martinho, V. (eds) The Agricultural Economics of the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-319-09471-7_10

Download citation

Publish with us

Policies and ethics