Skip to main content

The Loss Tangent of Visco-Elastic Models

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Applications

Abstract

When modelling visco-elasticity, be it linearly (standard linear solid with two springs and one damper) or non-linearly (power and log models), it is important to know on which model parameters the viscous energy loss depends on. In this paper, the dependency of the loss tangent (tan δ, ratio of loss modulus to storage modulus) and the phase angle δ on elasticity E and viscosity η parameters and on the excitation frequency f is derived and evaluated in three visco-elastic models. In the Zener model (standard linear solid of Voight form), tan δ and δ depend on E, η, and f. f and η are linked together and always occur as the product . Tan δ is smaller than π/2. The transient part of the stress function is an exponential function; the steady state part comprises of sine and cosine functions. In the power model, tan δ and δ depend on η only; (0 ≤ η < 1). η has no relationship with f in tan δ. Tan δ is smaller than π/2. The transient part of the stress function is a Maclaurin series; the steady state part is a sine function with ηπ/2 phase shift. In the log model, tan δ and δ depend on E, η, and f; but at the same f, larger E/η have larger tan δ and δ. The viscosity constant appears as a stand alone η, and as the product of η and log 2πf. Tan δ can be larger than π/2 at small E/η (high viscosity) and small frequencies (large cycle periods with small strain rates). The transient part of the stress function comprises of cosine and sine integrals; steady state part consists of sine and cosine functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions, 9th edn. Dover Publishing, Mineola

    MATH  Google Scholar 

  • Findley WN, Lai JS, Onaran K (1989) Creep and relaxation of nonlinear viscoelastic materials. Dover Publications, New York

    Google Scholar 

  • Fuss FK (2008a) Cricket balls: construction, non-linear visco-elastic properties, quality control and implications for the game. Sports Technol 1(1):41–55. doi:10.1002/jst.8

    Article  Google Scholar 

  • Fuss FK (2008b) Logarithmic visco-elastic impact modelling of golf balls. In: Estivalet M, Brisson B (eds) The engineering of sport 7. Springer, Paris, pp 45–51

    Chapter  Google Scholar 

  • Fuss FK (2009) The collapse timing and rate of closed cell foams: revealing a conceptual misunderstanding of foam mechanics. In: Alam F, Smith LV, Subic A, Fuss FK, Ujihashi S (eds) The impact of technology on sport III. RMIT Press, Melbourne, pp 659–664

    Google Scholar 

  • Fuss FK (2012) Nonlinear visco-elastic materials: stress relaxation and strain rate dependency. In: Dai L, Jazar RN (eds) Nonlinear approaches in engineering applications. Springer, New York, pp 135–170. doi:10.1007/978-1-4614-1469-8_5

    Chapter  Google Scholar 

  • Lakes R (2009) Viscoelastic materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Oldham KB, Spanier J (1974) The fractional calculus. Academic, New York

    MATH  Google Scholar 

  • Provenzano P, Lakes R, Keenan T, Vanderby R (2001) Nonlinear ligament viscoelasticity. Ann Biomed Eng 29(10):908–14

    Article  Google Scholar 

  • Schelkunoff SA (1944) Proposed symbols for the modified cosine and exponential integral. Q Appl Math 2:90

    MathSciNet  Google Scholar 

  • Weyl H (1917) Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 62:296–302

    Google Scholar 

  • Wiechert E (1889) Ueber elastische Nachwirkung. Dissertation, Königsberg University, Königsberg

    Google Scholar 

  • Wiechert E (1893) Gesetze der elastischen Nachwirkung für constante Temperatur. Ann Phys 286:335–348, 546–570

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Konstantin Fuss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fuss, F.K. (2015). The Loss Tangent of Visco-Elastic Models. In: Dai, L., Jazar, R. (eds) Nonlinear Approaches in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-09462-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09462-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09461-8

  • Online ISBN: 978-3-319-09462-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics