Skip to main content

Trajectory Control Strategy for Anthropomorphic Robotic Finger

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8608))

Included in the following conference series:

  • 2869 Accesses

Abstract

This paper proposes a trajectory control strategy for a tendon-driven robotic finger based on the musculoskeletal system of the human finger. First, we analyzed the relationship between the stereotypical trajectory of the human finger and joint torques generated by the muscles, and hypothesized that the motion of the human finger can be divided into two categories: one following a predetermined trajectory and the other changing the trajectory, which is mainly caused by the action of intrinsic muscles. We applied this control method to an anthropomorphic tendon-driven robotic finger and observed the change in motion caused by adjustments in the actuator’s pattern, which corresponds to human intrinsic muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murray, R.M., Li, Z., Sastry, S.S.: A mathematical introduction to robotic manipulation. CRC Press (1994)

    Google Scholar 

  2. Tsai, L.W.: Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New York (1999)

    Google Scholar 

  3. Zollo, L., Roccella, S., Guglielmelli, E., Carrozza, M., Dario, P.: Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Transactions on Mechatronics 12(4), 418–429 (2007)

    Article  Google Scholar 

  4. Shirafuji, S., Ikemoto, S., Hosoda, K.: Development of a tendon-driven robotic finger for an anthropomorphic robotic hand (in press). The International Journal of Robotics Research (in press, 2014)

    Google Scholar 

  5. Kamper, D., Cruz, E., Siegel, M.: Stereotypical fingertip trajectories during grasp. Journal of Neurophysiology 90(6), 3702–3710 (2003)

    Article  Google Scholar 

  6. Leijnse, J., Kalker, J.J.: A two-dimensional kinematic model of the lumbrical in the human finger. Journal of Biomechanics 28(3), 237–249 (1995)

    Article  Google Scholar 

  7. Kobayashi, H., Hyodo, K., Ogane, D.: On tendon-driven robotic mechanisms with redundant tendons. The International Journal of Robotics Research 17(5), 561–571 (1998)

    Article  Google Scholar 

  8. Soechting, J.F., Lacquaniti, F.: Invariant characteristics of a pointing movement in man. The Journal of Neuroscience 1(7), 710–720 (1981)

    Google Scholar 

  9. Dejmal, I., Zacksenhouse, M.: Coordinative structure of manipulative hand-movements facilitates their recognition. IEEE Transactions on Biomedical Engineering 53(12), 2455–2463 (2006)

    Article  Google Scholar 

  10. Friedman, J., Flash, T.: Trajectory of the index finger during grasping. Experimental Brain Research 196(4), 497–509 (2009)

    Article  Google Scholar 

  11. Spoor, C.W.: Balancing a force on the fingertip of a two-dimensional finger model without intrinsic muscles. J. Biomech. 16(7), 497–504 (1983)

    Article  Google Scholar 

  12. Leijnse, J.: Why the lumbrical muscle should not be bigger–a force model of the lumbrical in the unloaded human finger. Journal of Biomechanics 30(11-12), 1107–1114 (1997)

    Article  Google Scholar 

  13. Hogan, N.: Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Transactions on Automatic Control 29(8), 681–690 (1984)

    Article  MATH  Google Scholar 

  14. Kobayashi, H., Ozawa, R.: Adaptive neural network control of tendon-driven mechanisms with elastic tendons. Automatica 39(9), 1509–1519 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wimbock, T., Ott, C., Albu-Schaffer, A., Kugi, A., Hirzinger, G.: Impedance control for variable stiffness mechanisms with nonlinear joint coupling. In: The IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3796–3803. IEEE (2008)

    Google Scholar 

  16. Jindrich, D.L., Balakrishnan, A.D., Dennerlein, J.T.: Effects of keyswitch design and finger posture on finger joint kinematics and dynamics during tapping on computer keyswitches. Clinical Biomechanics 19(6), 600–608 (2004)

    Article  Google Scholar 

  17. Kuo, P., Lee, D.L., Jindrich, D.L., Dennerlein, J.T.: Finger joint coordination during tapping. Journal of Biomechanics 39(16), 2934–2942 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shirafuji, S., Ikemoto, S., Hosoda, K. (2014). Trajectory Control Strategy for Anthropomorphic Robotic Finger. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics