Skip to main content

Capturing Stochastic Insect Movements with Liquid State Machines

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8608))

Included in the following conference series:

Abstract

A Liquid State Machine (LSM) is trained to model the stochastic behavior of a cockroach exploring an unknown environment. The LSM is a recurrent neural network of leaky-integrate-and-fire neurons interconnected by synapses with intrinsic dynamics and outputs to an Artificial Neural Network (ANN). The LSM is trained by a reinforcement approach to produce a probability distribution over a discrete control space which is then sampled by the controller to determine the next course of action. The LSM is able to capture several observed phenomenon of cockroach exploratory behavior including resting under shelters and wall following.

This work is based upon work support by\(_{\rm }^{\rm * }\)Defense Advanced Research Projects Agency (DARPA) Maximum Mobility and Manipulation (M3) research grant No. DI-MISC-81612A and by the National Science Foundation (NSF) under grant No. IIS-1065489. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of either DARPA or NSF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daltorio, K., Tietz, B., Bender, J., Webster, V., Szczecinski, N., Branicky, M., Ritzmann, R., Quinn, R.: A model of exploration and goal-searching in the cockroach, Blaberus discoidali. Adapt. Behav. 21, 404–420 (2013)

    Google Scholar 

  2. Daltorio, A., Tietz, B., Bender, J., Webster, V.: A stochastic algorithm for explorative goal seeking extracted from cockroach walking data. In: 2012 IEEE INternational Conference on Robootics and Automation (ICRA), pp. 2261–2268 (2012)

    Google Scholar 

  3. Wessberg, J., Stambaugh, C., Kralik, J., Beck, P., Laubach, M., Chapin, J., Kim, J., Biggs, J., Srinivasan, M., Nicolelis, M.: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365 (2000)

    Article  Google Scholar 

  4. Nikolić, D., Haeusler, S., Singer, W., Maass, W.: Temporal dynamics of information content carried by neurons in the primary visual cortex. In: Adv. Neural Inf. Process. Syst., pp. 1041–1048 (2006)

    Google Scholar 

  5. Dominey, P., Hoen, M., Inui, T.: A neurolinguistic model of grammatical construction processing. J. Cogn. Neurosci. 18, 2088–2107 (2006)

    Article  Google Scholar 

  6. Blanc, J., Dominey, P.: Identification of prosodic attitudes by a temporal recurrent network. Cogn. Brain Res. 17, 693–699 (2003)

    Article  Google Scholar 

  7. Buonomano, D., Maass, W.: State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10, 113–125 (2009)

    Article  Google Scholar 

  8. Maass, W., Legenstein, R., Bertschinger, N.: Methods for estimating the computational power and generalization capability of neural microcircuits (2005)

    Google Scholar 

  9. Maass, W., Natschläger, T., Markram, H.: Computational models for generic cortical microcircuits. Comput. Neurosci. (2004)

    Google Scholar 

  10. Tsodyks, M., Markram, H.: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997)

    Article  Google Scholar 

  11. Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neural Comput. (2005)

    Google Scholar 

  12. Burgsteiner, H.: On learning with recurrent spiking neural networks and their applications to robot control with real-world devices (2005)

    Google Scholar 

  13. Ju, H., Xu, J., VanDongen, A.: Classification of musical styles using liquid state machines. In: Neural Networks (IJCNN) (2010)

    Google Scholar 

  14. Straw, A., Dickinson, M.: Motmot, an open-source toolkit for real-time video acquisition and analysis. Source Code Biol. Med. 4 (2009)

    Google Scholar 

  15. Branson, K., Robie, A., Bender, J., Perone, P., Dickinson, M.: High-throughput ethomics in large groups of Drosophila. Nat. Methods. 6, 451–457 (2009)

    Article  Google Scholar 

  16. Joshi, P., Maass, W.: Movement generation and control with generic neural microcircuits. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT 2004. LNCS, vol. 3141, pp. 258–273. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (80) (1997)

    Google Scholar 

  18. Joshi, P.: From memory-based decisoin to decision-based movements: A model of interval discrimination followed by action selection. Neural Networks 20, 298–311 (2007)

    Article  MATH  Google Scholar 

  19. Ju, H., Xu, J., VanDongen, A.: Classification of musical styles using liquid state machines. In: The 2010 Internationa Joint Conference on Neural Networks, IJCNN, pp. 1–7. IEEE (2010)

    Google Scholar 

  20. Haykin, S.: Neural Networks and Learning Machines. Prentice Hall (2008)

    Google Scholar 

  21. Goodman, D., Brette, R.: Brian: a simulator for spiking neural networks in Python. Front. Neuroinform. (2008)

    Google Scholar 

  22. Chapman, T.P., Webb, B.: A model of antennal wall-following and escape in the cockroach. J. Comp. Physiol. 192, 949–969 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lonsberry, A., Daltorio, K., Quinn, R.D. (2014). Capturing Stochastic Insect Movements with Liquid State Machines. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics