Advertisement

Role of Lysozymes of Anopheles Mosquitoes in Plasmodium Development

  • Clelia Oliva
  • Luca Facchinelli
  • Nicoletta Basilico
  • Roberta Spaccapelo
Chapter

Abstract

Lysozymes are important regulators of the immune system in most organisms. These enzymes can show a direct bactericidal activity or upregulate the signaling cascades that result in the production of antimicrobial peptides. In mosquitoes and particularly in the malaria-vector species of the genus Anopheles, lysozymes are present in different tissues and developmental stage expression profiles and are involved in the innate immunity and digestion of bacteria. In An. gambiae, lysozyme C1 protects the oocysts from melanization, thus contributing to an increased prevalence and intensity of Plasmodium berghei infection. The role and importance of lysozymes in the mosquito and in the regulation of oocysts development and the mechanism of action are still unclear.

Keywords

Basal Lamina Blood Feeding Micrococcus Luteus Plasmodium Berghei Critical Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abraham EG, Nagaraju J, Salunke D et al (1995) Purification and partial characterization of an induced antibacterial protein in the silkworm, Bombyx mori. J Invertebr Pathol 65:17–24PubMedCrossRefGoogle Scholar
  2. Adini A, Warburg A (1999) Interaction of Plasmodium gallinaceum ookinetes and oocysts with extracellular matrix proteins. Parasitology 119:331–336PubMedCrossRefGoogle Scholar
  3. Ahmed AM, Maingon BR, Hurd H (2002) The cost of mounting of an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97:371–377CrossRefGoogle Scholar
  4. Arrighi RBG, Lycett G, Mahairaki V et al (2005) Laminin and the malaria parasite’s journey through the mosquito midgut. J Exp Biol 208:2497–2502PubMedCrossRefGoogle Scholar
  5. Bachali S, Jager M, Hassanin A et al (2002) Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. J Mol Evol 54:652–664PubMedCrossRefGoogle Scholar
  6. Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35:127–160PubMedCrossRefGoogle Scholar
  7. Castillo JC, Robertson AE, Strand MR (2006) Characterization of hemocytes from the mosquito Anopheles gambiae and Aedes aegypti. Insect Biochem Mol Biol 36:891–903PubMedCrossRefPubMedCentralGoogle Scholar
  8. Christensen BM, Li J, Chen CC, Nappi AJ (2005) Melanization immune responses in mosquito vectors. Trends Parasitol 21:192–199PubMedCrossRefGoogle Scholar
  9. Cotter SC, Myatt JP, Benskin CM, Wilson K (2008) Selection for cuticular melanism reveals immune function and life-history trade-offs in Spodoptera littoralis. J Evol Biol 21:1744–1754PubMedCrossRefGoogle Scholar
  10. Daffre S, Kylsten P, Samakovlis C, Hultmark D (1994) The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Mol Gen Genet 242:152–162PubMedCrossRefGoogle Scholar
  11. Dessens JT, Siden-Kiamos I, Mendoza J et al (2003) SOAP, a novel malaria ookinetes protein involved in mosquito midgut invasion and oocyst development. Mol Microbiol 49:319–329PubMedCrossRefGoogle Scholar
  12. Dong Y, Aguilar R, Xi Z et al (2006) Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2:e52PubMedCrossRefPubMedCentralGoogle Scholar
  13. Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5:e1000423PubMedCrossRefPubMedCentralGoogle Scholar
  14. During K, Porsh P, Mahn A (1996) The non-enzymatic microbicidal activity of lysozymes. FEBS Lett 449:93–100CrossRefGoogle Scholar
  15. Hultmark D (1996) Insect lysozymes. EXS 75:87–102PubMedGoogle Scholar
  16. Ibrahim HR, Thomas U, Pellegrini A (2001) A helix–loop–helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem 276:43767–43774PubMedCrossRefGoogle Scholar
  17. Ito Y, Yoshikawa A, Hotani T et al (1999) Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. Eur J Biochem 259:456–461PubMedCrossRefGoogle Scholar
  18. Kajla MK, Andreeva O, Gilbreath TM et al (2010) Characterization of expression, activity and role in antibacterial immunity of Anopheles gambiae lysozyme c-1. Comp Biochem Physiol B Biochem Mol Biol 155:201–209PubMedCrossRefPubMedCentralGoogle Scholar
  19. Kajla MK, Shi L, Li B et al (2011) A new role for an old antimicrobial: lysozyme c-1 can function to protect malaria parasites in Anopheles mosquitoes. PLoS One 6:e19649PubMedCrossRefPubMedCentralGoogle Scholar
  20. Kang D, Romans P, Lee JY (1996) Analysis of a lysozyme gene from the malaria vector mosquito, Anopheles gambiae. Gene 174:239–244PubMedCrossRefGoogle Scholar
  21. Kim CH, Park J-W, Ha N-C et al (2008) Innate immune response in insects: recognition of bacterial peptidoglycan and amplification of its recognition signal. BMB Rep 41:93–101PubMedCrossRefGoogle Scholar
  22. Kylsten P, Kimbrell DA, Daffre S, Samakovlis C, Hultmark D (1992) The lysozyme locus in Drosophila melanogaster: different genes are expressed in gut and salivary glands. Mol Gen Genet 232:335–343PubMedCrossRefGoogle Scholar
  23. Lemos FJA, Ribeiro AF, Terra WR (1993) A bacteria-digesting midgut-lysozyme from Musca domestica (diptera) larvae. Purification, properties and secretory mechanism. Insect Biochem Mol Biol 23:533–541CrossRefGoogle Scholar
  24. Li B, Calvo E, Marinotti O et al (2005) Characterization of the c-type lysozyme gene family in Anopheles gambiae. Gene 360:131–139PubMedCrossRefGoogle Scholar
  25. Li B, Paskewitz SM (2006) A role for lysozyme in melanization of Sephadex beads in Anopheles gambiae. J Insect Physiol 52:936–942PubMedCrossRefGoogle Scholar
  26. Mahairaki V, Voyatzi T, Siden-Kiamos I, Louis C (2005) The Anopheles gambiae gamma 1 laminin directly binds the Plasmodium berghei circumsporozoite and TRAP-related protein (CTRP). Mol Biochem Parasitol 140:119–121PubMedCrossRefGoogle Scholar
  27. Mai W, Hu C (2009) cDNA cloning, expression and antibacterial activity of lysozyme C in the blue shrimp (Litopanaeus stylirostris). Prog Nat Sci 19:837–844CrossRefGoogle Scholar
  28. Masschalck B, Michiels CW (2003) Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol 29:191–214PubMedCrossRefGoogle Scholar
  29. Moss JM, Van Damme MPI, Murphy WH, Preston BN (1997) Dependence of salt concentration on glycosaminoglycan-lysozyme interactions in cartilage. Arch Biochem Biophys 348:49–55PubMedCrossRefGoogle Scholar
  30. Meis JF, Pool G, van Gemert GJ et al (1989) Plasmodium falciparum ookinetes migrate intercellularly through Anopheles stephensi midgut epithelium. Parasitol Res 76:13–19PubMedCrossRefGoogle Scholar
  31. Moreira-Ferro CK, Marinotti O, Bijovsky AT (1999) Morphological and biochemical analyses of the salivary glands of the malaria vector, Anopheles darlingi. Tissue Cell 31:264–273PubMedCrossRefGoogle Scholar
  32. Nacer A, Walker K, Hurd H (2008) Localisation of laminin within Plasmodium berghei oocysts and the midgut epithelial cells of Anopheles stephensi. Parasit Vectors 1:33PubMedCrossRefPubMedCentralGoogle Scholar
  33. Nakimbugave D, Masschalck B, Atanassova M et al (2006) Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure. Int J Food Microbiol 108:355–363Google Scholar
  34. Nilsen IW, Overbo K, Sandsdalen E et al (1999) Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antibacterial activity. FEBS Lett 464:153–158PubMedCrossRefGoogle Scholar
  35. Osta M, Christophides GK, Kafatos FC (2004) Effects of mosquito genes on Plasmodium development. Science 303:2030–2032PubMedCrossRefGoogle Scholar
  36. Park PW, Biedermann K, Mecham L et al (1996) Lysozyme binds to elastin and protects elastin from elastase-mediated degradation. J Invest Dermatol 106:1075–1080PubMedCrossRefGoogle Scholar
  37. Park JW, Kim CH, Kim JH et al (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proc Natl Acad Sci U S A 104:6602–6607PubMedCrossRefPubMedCentralGoogle Scholar
  38. Paskewitz SM, Li B, Kajla MK (2008) Cloning and molecular characterization of two invertebrate-type lysozymes from Anopheles gambiae. Insect Mol Biol 17:217–225PubMedCrossRefPubMedCentralGoogle Scholar
  39. Povey S, Cotter SC, Simpson SJ et al (2009) Can the protein costs of bacterial resistance be offset by altered feeding behaviour? J Anim Ecol 78:437–446PubMedCrossRefGoogle Scholar
  40. Rao X-J, Ling E, Yu X-Q (2010) The role of lysozyme in the prophenoloxidase activation system of Manduca sexta: an in vitro approach. Dev Comp Immunol 34:264–271PubMedCrossRefPubMedCentralGoogle Scholar
  41. Reddy JT, Locke M (1990) The size limited penetration of gold particles through insect basal laminae. J Insect Physiol 36:397–408CrossRefGoogle Scholar
  42. Rossignol PA, Lueders AM (1986) Bacteriolytic factor in the salivary glands of the Aedes aegypti. Comp Biochem Physiol 83:819–822Google Scholar
  43. Skerrett SJ (2004) Lysozyme in pulmonary host defense. Am J Respir Crit Care Med 169:435–436PubMedCrossRefGoogle Scholar
  44. Vlachou D, Lycett G, Siden-Kiamos I et al (2001) Anopheles gambiae laminin interacts with the P25 surface protein of Plasmodium berghei ookinetes. Mol Biochem Parasitol 112:229–237PubMedCrossRefGoogle Scholar
  45. Yu KH, Kim KN, Lee JH et al (2002) Comparative study on characteristics of lysozymes from the hemolymph of three lepidopteran larvae, Galleria mellonella, Bombyx mori, Agrius convolvuli. Dev Comp Immunol 26:707–713PubMedCrossRefGoogle Scholar
  46. Zavalova LL, Baskova IP, Lukyanov SA et al (2000) Destabilase from the medicinal leech is a representative of a novel family of lysozymes. Biochim Biophys Acta 1478:69–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Clelia Oliva
    • 1
  • Luca Facchinelli
    • 1
  • Nicoletta Basilico
    • 2
  • Roberta Spaccapelo
    • 1
  1. 1.Dipartimento di Medicina SperimentaleUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.Dipartimento di Scienze Biomediche, Chirurgiche e OdontoiatricheUniversità degli Studi di MilanoMilanItaly

Personalised recommendations