Skip to main content

Malaria Diagnosis, Therapy, Vaccines, and Vector Control

  • Chapter
  • First Online:
Human and Mosquito Lysozymes

Abstract

Malaria remains a massive public health problem in the world affecting more than 200 million people and causing 600,000 deaths every year, mostly in children under 5 years of age. Malaria control strategies include treatment of diagnosis-confirmed patients with artemisinin-based combination therapy, protection of individuals with insecticide-treated bed nets, and indoor residual spraying to fight against the vector. However, the emergence of artemisinin resistance in P. falciparum in Southeast Asia and the development of insecticide resistance in mosquitoes are putting these control tools at risk. An effective vaccine could be the tool to reach the eradication goal. However, only the RTS,S/AS01 vaccine is likely to be launched in 2015, despite its effectiveness is modest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnandji ST, Lell B, Soulanoudjingar SS et al (2011) First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med 365:1863–1875

    PubMed  Google Scholar 

  • Agnandji ST, Lell B, Fernandes JF et al (2012) A phase 3 trial of RTS, S/AS01 malaria vaccine in African infants. N Engl J Med 367:2284–2295

    PubMed  CAS  Google Scholar 

  • Antinori S, Galimberti L, Milazzo L et al (2013) Plasmodium knowlesi: the emerging zoonotic malaria parasite. Acta Trop 125:191–201

    PubMed  Google Scholar 

  • Barber BE, William T, Grigg MJ et al (2013) A prospective comparative study of knowlesi, falciparum, and vivax malaria in Sabah, Malaysia: high proportion with severe disease from Plasmodium knowlesi and Plasmodium vivax but no mortality with early referral and artesunate therapy. Clin Infect Dis 56:383–397

    PubMed  CAS  Google Scholar 

  • Barker RH, Banchongaksorn T, Courval JM et al (1992) A simple method to detect Plasmodium falciparum directly from blood samples using the polymerase chain reaction. Am J Trop Med Hyg 46:416–426

    PubMed  Google Scholar 

  • Benedict MQ, Robinson AS (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19:349–355

    PubMed  Google Scholar 

  • Boström S, Ibitokou S, Oesterholt M et al (2012) Biomarkers of Plasmodium falciparum infection during pregnancy in women living in northeastern Tanzania. PLoS One 7:e48763

    PubMed  PubMed Central  Google Scholar 

  • Bray PG, Martin RE, Tilley L et al (2005) Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol 56:323–333

    PubMed  CAS  Google Scholar 

  • Bronner U, Divis PC, Färnert A et al (2009) Swedish traveller with Plasmodium knowlesi malaria after visiting Malaysian Borneo. Malar J 8:15

    PubMed  PubMed Central  Google Scholar 

  • Brown PJ (1997) Malaria, miseria, and underpopulation in Sardinia: the “malaria blocks development” cultural model. Med Anthropol 17:239–254

    PubMed  CAS  Google Scholar 

  • Bushby SR (1969) Combined antibacterial action in vitro of trimethoprim and sulphonamides. The in vitro nature of synergy. Postgrad Med J 45(suppl):10–18

    PubMed  CAS  Google Scholar 

  • Catteruccia F, Crisanti A, Wimmer EA (2009) Transgenic technologies to induce sterility. Malar J 8(suppl 2):S7

    PubMed  PubMed Central  Google Scholar 

  • Clyde DF, Most H, McCarthy VC et al (1973) Immunization of man against sporozite-induced falciparum malaria. Am J Med Sci 266:169–177

    PubMed  CAS  Google Scholar 

  • Coleman RE, Clavin AM, Milhous WK (1992) Gametocytocidal and sporontocidal activity of antimalarials against Plasmodium berghei ANKA in ICR mice and anopheles stephensi mosquitoes. Am J Trop Med Hyg 46:169–182

    PubMed  CAS  Google Scholar 

  • Davis TM, Hung TY, Sim IK et al (2005) Piperaquine: a resurgent antimalarial drug. Drugs 65:75–87

    PubMed  CAS  Google Scholar 

  • Dietze R, Perkins M, Boulos M et al (1995) The diagnosis of Plasmodium falciparum infection using a new antigen detection system. Am J Trop Med Hyg 52:45–49

    PubMed  CAS  Google Scholar 

  • Dinglasan RR, Jacobs-Lorena M (2008) Flipping the paradigm on malaria transmission-blocking vaccines. Trends Parasitol 24:364–370

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dondorp A, Nosten F, Stepniewska K et al (2005a) Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366:717–725

    PubMed  Google Scholar 

  • Dondorp AM, Desakorn V, Pongtavornpinyo W et al (2005b) Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med 2:e204

    PubMed  PubMed Central  Google Scholar 

  • Dondorp AM, Fanello CI, Hendriksen IC et al (2010) Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376:1647–1657

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eckstein-Ludwig U, Webb RJ, Van Goethem ID et al (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961

    PubMed  CAS  Google Scholar 

  • Egan TJ (2008) Haemozoin formation. Mol Biochem Parasitol 157:127–136

    PubMed  CAS  Google Scholar 

  • Epstein JE, Tewari K, Lyke KE et al (2011) Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334:475–480

    PubMed  CAS  Google Scholar 

  • Fitch CD, Cai GZ, Chen YF et al (2003) Relationship of chloroquine-induced redistribution of a neutral aminopeptidase to hemoglobin accumulation in malaria parasites. Arch Biochem Biophys 410:296–306

    PubMed  CAS  Google Scholar 

  • Fowkes FJ, Richards JS, Simpson JA et al (2010) The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: a systematic review and meta-analysis. PLoS Med 7:e1000218

    PubMed  PubMed Central  Google Scholar 

  • Gamboa D, Ho MF, Bendezu J et al (2010) A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One 5:e8091

    PubMed  PubMed Central  Google Scholar 

  • Ghosh AK, Ribolla PE, Jacobs-Lorena M (2001) Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci U S A 98:13278–13281

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goodman AL, Draper SJ (2010) Blood-stage malaria vaccines—recent progress and future challenges. Ann Trop Med Parasitol 104:189–211

    PubMed  CAS  Google Scholar 

  • Gordon DM, Mcgovern TW, Krzych U et al (1995) Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J Infect Dis 171:1576–1585

    PubMed  CAS  Google Scholar 

  • Greenwood B (2005) Malaria vaccines. Evaluation and implementation. Acta Trop 95:298–304

    PubMed  CAS  Google Scholar 

  • Greenwood BM, Fidock DA, Kyle DE et al (2008) Malaria: progress, perils, and prospects for eradication. J Clin Invest 118:1266–1276

    PubMed  CAS  PubMed Central  Google Scholar 

  • Grobusch MP, Egan A, Gosling RD et al (2007) Intermittent preventive therapy for malaria: progress and future directions. Curr Opin Infect Dis 20:613–620

    PubMed  Google Scholar 

  • Gwadz RW, Kaslow D, Lee JY et al (1989) Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun 57:2628–2633

    PubMed  CAS  PubMed Central  Google Scholar 

  • Han ET, Watanabe R, Sattabongkot J et al (2007) Detection of four Plasmodium species by genus- and species-specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol 45:2521–2528

    PubMed  CAS  PubMed Central  Google Scholar 

  • Haynes RK (2006) From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Top Med Chem 6:509–537

    PubMed  CAS  Google Scholar 

  • Haynes RK, Chan WC, Wong HN et al (2010) Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action. ChemMedChem 5:1282–1299

    PubMed  CAS  Google Scholar 

  • Haynes RK, Cheu KW, Chan HW et al (2012) Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model—a unifying proposal for drug action. ChemMedChem 7:2204–2226

    PubMed  CAS  Google Scholar 

  • Higgins SJ, Xing K, Kim H et al (2013) Systemic release of high mobility group box 1 (HMGB1) protein is associated with severe and fatal Plasmodium falciparum malaria. Malar J 12:105

    PubMed  PubMed Central  Google Scholar 

  • Hoppe HC, Van Schalkwyk DA, Wiehart UIM et al (2004) Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum. Antimicrob Agents Chemother 48:2370–2378

    PubMed  CAS  PubMed Central  Google Scholar 

  • Houzé S, Hubert V, Le Pessec G et al (2011) Combined deletions of pfhrp2 and pfhrp3 genes result in Plasmodium falciparum malaria false-negative rapid diagnostic test. J Clin Microbiol 49:2694–2696

    PubMed  PubMed Central  Google Scholar 

  • Hurwitz I, Fieck A, Read A et al (2011) Paratransgenic control of vector borne diseases. Int J Biol Sci 7:1334–1344

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hviid L (2010) The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development. Hum Vaccin 6:84–89

    PubMed  CAS  Google Scholar 

  • Iqbal J, Khalid N, Hira PR (2002) Comparison of two commercial assays with expert microscopy for confirmation of symptomatically diagnosed malaria. J Clin Microbiol 40:4675–4678

    PubMed  PubMed Central  Google Scholar 

  • Iseki H, Kawai S, Takahashi N et al (2010) Evaluation of a loop-mediated isothermal amplification method as a tool for diagnosis of infection by the zoonotic simian malaria parasite Plasmodium knowlesi. J Clin Microbiol 48:2509–2514

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jani D, Nagarkatti R, Beatty W et al (2008) HDP-a novel heme detoxification protein from the malaria parasite. PLoS Pathog 4:e1000053

    PubMed  PubMed Central  Google Scholar 

  • Jepsen MP, Jogdand PS, Singh SK et al (2013) The malaria vaccine candidate GMZ2 elicits functional antibodies in individuals from malaria endemic and non-endemic areas. J Infect Dis 208:479–488

    PubMed  CAS  Google Scholar 

  • Kattenberg JH, Versteeg I, Migchelsen SJ et al (2012) New developments in malaria diagnostics: monoclonal antibodies against Plasmodium dihydrofolate reductase-thymidylate synthase, heme detoxification protein and glutamate rich protein. MAbs 4:120–126

    PubMed  PubMed Central  Google Scholar 

  • Khadjavi AG, Prato M (2010) From control to eradication of malaria: the end of being stuck in second gear? Asian Pac J Trop Med 3:412–420

    Google Scholar 

  • Kilian AH, Metzger WG, Mutschelknauss EJ et al (2000) Reliability of malaria microscopy in epidemiological studies: results of quality control. Trop Med Int Health 5:3–8

    PubMed  CAS  Google Scholar 

  • Kokoza V, Ahmed A, Woon Shin S et al (2010) Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A 107:8111–8116

    PubMed  CAS  PubMed Central  Google Scholar 

  • Krungkrai J, Burat D, Kudan S et al (1999) Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Public Health 30:636–642

    PubMed  CAS  Google Scholar 

  • Kumar N, Pande V, Bhatt RM et al (2013) Genetic deletion of HRP2 and HRP3 in Indian Plasmodium falciparum population and false negative malaria rapid diagnostic test. Acta Trop 125:119–121

    PubMed  CAS  Google Scholar 

  • Kutz FW, Wood PH, Bottimore DP (1991) Organochlorine pesticides and polychlorinated biphenyls in human adipose tissue. Rev Environ Contam Toxicol 120:1–82

    PubMed  CAS  Google Scholar 

  • Lau YL, Fong MY, Mahmud R et al (2011) Specific, sensitive and rapid detection of human plasmodium knowlesi infection by loop-mediated isothermal amplification (LAMP) in blood samples. Malar J 10:197

    PubMed  CAS  PubMed Central  Google Scholar 

  • Legrand E, Volney B, Meynard JB et al (2008) In vitro monitoring of Plasmodium falciparum drug resistance in French Guiana: a synopsis of continuous assessment from 1994 to 2005. Antimicrob Agents Chemother 52:288–298

    PubMed  CAS  PubMed Central  Google Scholar 

  • Longo M, Zanoncelli S, Torre PD et al (2006) In vivo and in vitro investigations of the effects of the antimalarial drug dihydroartemisinin (DHA) on rat embryos. Reprod Toxicol 22:797–810

    PubMed  CAS  Google Scholar 

  • Mayxay M, Pukrittayakamee S, Chotivanich K et al (2001) Persistence of Plasmodium falciparum HRP-2 in successfully treated acute falciparum malaria. Trans R Soc Trop Med Hyg 95:179–182

    PubMed  CAS  Google Scholar 

  • Mayxay M, Pukrittayakamee S, Newton PN et al (2004) Mixed-species malaria infections in humans. Trends Parasitol 20:233–240

    PubMed  Google Scholar 

  • Mayxay M, Barends M, Brockman A et al (2007) In vitro antimalarial drug susceptibility and pfcrt mutation among fresh Plasmodium falciparum isolates from the Lao PDR (Laos). Am J Trop Med Hyg 76:245–250

    PubMed  CAS  Google Scholar 

  • Meshnick SR, Thomas A, Ranz A et al (1991) Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. Mol Biochem Parasitol 49:181–189

    PubMed  CAS  Google Scholar 

  • Mharakurwa S, Shiff CJ (1997) Post treatment sensitivity studies with the ParaSight-F test for malaria diagnosis in Zimbabwe. Acta Trop 66:61–67

    PubMed  CAS  Google Scholar 

  • Minota S, Cameron B, Welch WJ et al (1988) Autoantibodies to the constitutive 73-kD member of the hsp70 family of heat shock proteins in systemic lupus erythematosus. J Exp Med 168:1475–1480

    PubMed  CAS  Google Scholar 

  • Mouatcho JC, Goldring JP (2013) Malaria rapid diagnostic tests: challenges and prospects. J Med Microbiol 62:1491–1505

    PubMed  CAS  Google Scholar 

  • Mueller I, Betuela I, Ginny M et al (2007) The sensitivity of the OptiMAL rapid diagnostic test to the presence of Plasmodium falciparum gametocytes compromises its ability to monitor treatment outcomes in an area of Papua New Guinea in which malaria is endemic. J Clin Microbiol 45:627–630

    PubMed  CAS  PubMed Central  Google Scholar 

  • Müller P, Warr E, Stevenson BJ et al (2008) Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 4:e1000286

    PubMed  PubMed Central  Google Scholar 

  • Mutanda LN (1999) Assessment of drug resistance to the malaria parasite in residents of Kampala, Uganda. East Afr Med J 76:421–424

    PubMed  CAS  Google Scholar 

  • N’Guessan R, Darriet F, Guillet P et al (2003) Resistance to carbosulfan in Anopheles gambiae from Ivory Coast, based on reduced sensitivity of acetylcholinesterase. Med Vet Entomol 17:19–25

    PubMed  Google Scholar 

  • Na BK, Park JW, Lee HW et al (2007) Characterization of Plasmodium vivax heat shock protein 70 and evaluation of its value for serodiagnosis of tertian malaria. Clin Vaccine Immunol 14:320–322

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nardin EH, Nussenzweig RS (1993) T cell responses to pre-erythrocytic stages of malaria: role in protection and vaccine development against pre-erythrocytic stages. Annu Rev Immunol 11:687–727

    PubMed  CAS  Google Scholar 

  • Nguyen PH, Day N, Pram TD et al (1995) Intraleucocytic malaria pigment and prognosis in severe malaria. Trans R Soc Trop Med Hyg 89:200–204

    PubMed  CAS  Google Scholar 

  • Nussenzweig RS, Vanderberg J, Most H et al (1967) Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei. Nature 216:160–162

    PubMed  CAS  Google Scholar 

  • O’Neill PM, Bray PG, Hawley SR et al (1998) 4-Aminoquinolines—past, present, and future: a chemical perspective. Pharmacol Ther 77:29–58

    PubMed  Google Scholar 

  • O’Neill PM, Ward SA, Berry NG et al (2006) A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Curr Top Med Chem 6:479–507

    PubMed  Google Scholar 

  • O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin—the debate continues. Molecules 15:1705–1721

    PubMed  Google Scholar 

  • Oddoux O, Debourgogne A, Kantele A et al (2011) Identification of the five human Plasmodium species including P. knowlesi by real-time polymerase chain reaction. Eur J Clin Microbiol Infect Dis 30:597–601

    PubMed  CAS  Google Scholar 

  • Olliaro P (2001) Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol Ther 89:207–219

    PubMed  CAS  Google Scholar 

  • Olliaro PL, Haynes RK, Meunier B et al (2001) Possible modes of action of the artemisinin-type compounds. Trends Parasitol 17:122–126

    PubMed  CAS  Google Scholar 

  • Palmer CJ, Lindo JF, Klaskala WI et al (1998) Evaluation of the OptiMAL test for rapid diagnosis of Plasmodium vivax and Plasmodium falciparum malaria. J Clin Microbiol 36:203–206

    PubMed  CAS  PubMed Central  Google Scholar 

  • Partnership RBM (2008) The Global Malaria Action Plan—for a malaria free world.

    Google Scholar 

  • Peters W (1982) Antimalarial drug resistance: an increasing problem. Br Med Bull 38:187–192

    PubMed  CAS  Google Scholar 

  • Poon LL, Wong BW, Ma EH et al (2006) Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem 52:303–306

    PubMed  CAS  Google Scholar 

  • Posner GH, Oh CH, Gerena L et al (1992) Extraordinarily potent antimalarial compounds: new, structurally simple, easily synthesized, tricyclic 1,2,4-trioxanes. J Med Chem 35:2459–2467

    PubMed  CAS  Google Scholar 

  • Pradel G (2007) Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology 134:1911–1929

    PubMed  CAS  Google Scholar 

  • Pradines B, Mabika Mamfoumbi M, Parzy D et al (1998) In vitro susceptibility of Gabonese wild isolates of Plasmodium falciparum to artemether, and comparison with chloroquine, quinine, halofantrine and amodiaquine. Parasitology 117(Pt 6):541–545

    PubMed  CAS  Google Scholar 

  • Price RN, Douglas NM, Anstey NM (2009) New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance. Curr Opin Infect Dis 22:430–435

    PubMed  Google Scholar 

  • Ranson H, N’Guessan R, Lines J et al (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27:91–98

    PubMed  CAS  Google Scholar 

  • Raynes K (1999) Bisquinoline antimalarials: their role in malaria chemotherapy. Int J Parasitol 29:367–379

    PubMed  CAS  Google Scholar 

  • Richards JS, Beeson JG (2009) The future for blood-stage vaccines against malaria. Immunol Cell Biol 87:377–390

    PubMed  CAS  Google Scholar 

  • Ridley RG, Dorn A, Vippagunta SR et al (1997) Haematin (haem) polymerization and its inhibition by quinoline antimalarials. Ann Trop Med Parasitol 91:559–566

    PubMed  CAS  Google Scholar 

  • Rieckmann KH, Carson PE, Beaudoin RL et al (1974) Letter: sporozoite induced immunity in man against an Ethiopian strain of Plasmodium falciparum. Trans R Soc Trop Med Hyg 68:258–259

    PubMed  CAS  Google Scholar 

  • Roberts L, Egan TJ, Joiner KA et al (2008) Differential effects of quinoline antimalarials on endocytosis in Plasmodium falciparum. Antimicrob Agents Chemother 52:1840–1842

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rogerson SJ, Hviid L, Duffy PE et al (2007) Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 7:105–117

    PubMed  CAS  Google Scholar 

  • Sattabongkot J, Tsuboi T, Hisaeda H et al (2003) Blocking of transmission to mosquitoes by antibody to Plasmodium vivax malaria vaccine candidates Pvs25 and Pvs28 despite antigenic polymorphism in field isolates. Am J Trop Med Hyg 69:536–541

    PubMed  CAS  Google Scholar 

  • Seder RA, Chang LJ, Enama ME et al (2013) Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341:1359–1365

    PubMed  CAS  Google Scholar 

  • Sharma YD (1992) Structure and possible function of heat-shock proteins in Falciparum malaria. Comp Biochem Physiol B 102:437–444

    PubMed  CAS  Google Scholar 

  • Sherman IW (1979) Biochemistry of Plasmodium (malarial parasites). Microbiol Rev 43:453–495

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sinden RE (2010) A biologist’s perspective on malaria vaccine development. Hum Vaccin 6:3–11

    PubMed  CAS  Google Scholar 

  • Snounou G, Viriyakosol S, Jarra W et al (1993) Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol 58:283–292

    PubMed  CAS  Google Scholar 

  • Srivastava IK, Morrisey JM, Darrouzet E et al (1999) Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol 33:704–711

    PubMed  CAS  Google Scholar 

  • Sutherland CJ (2009) Surface antigens of Plasmodium falciparum gametocytes—a new class of transmission-blocking vaccine targets? Mol Biochem Parasitol 166:93–98

    PubMed  CAS  Google Scholar 

  • Tachibana M, Sato C, Otsuki H et al (2012) Plasmodium vivax gametocyte protein Pvs230 is a transmission-blocking vaccine candidate. Vaccine 30:1807–1812

    PubMed  CAS  Google Scholar 

  • Thévenon AD, Zhou JA, Megnekou R et al (2010) Elevated levels of soluble TNF receptors 1 and 2 correlate with Plasmodium falciparum parasitemia in pregnant women: potential markers for malaria-associated inflammation. J Immunol 185:7115–7122

    PubMed  PubMed Central  Google Scholar 

  • Tinto H, Rwagacondo C, Karema C et al (2006) In-vitro susceptibility of Plasmodium falciparum to monodesethylamodiaquine, dihydroartemisinin and quinine in an area of high chloroquine resistance in Rwanda. Trans R Soc Trop Med Hyg 100:509–514

    PubMed  CAS  Google Scholar 

  • Touré AO, Koné LP, Jambou R et al (2008) In vitro susceptibility of P. falciparum isolates from Abidjan (Côte d’Ivoire) to quinine, artesunate and chloroquine. Sante 18:43–47

    PubMed  Google Scholar 

  • Vaidya AB, Lashgari MS, Pologe LG et al (1993) Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol Biochem Parasitol 58:33–42

    PubMed  CAS  Google Scholar 

  • Vanbuskirk KM, O’Neill MT, De La Vega P et al (2009) Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proc Natl Acad Sci U S A 106:13004–13009

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vennerstrom JL, Ellis WY, Ager AL et al (1992) Bisquinolines. 1. N, N-bis(7-chloroquinolin-4-yl)alkanediamines with potential against chloroquine-resistant malaria. J Med Chem 35:2129–2134

    PubMed  CAS  Google Scholar 

  • Vennerstrom JL, Nuzum EO, Miller RE et al (1999) 8-Aminoquinolines active against blood stage Plasmodium falciparum in vitro inhibit hematin polymerization. Antimicrob Agents Chemother 43:598–602

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vinayak S, Rathore D, Kariuki S et al (2009) Limited genetic variation in the Plasmodium falciparum heme detoxification protein (HDP). Infect Genet Evol 9:286–289

    PubMed  CAS  Google Scholar 

  • Warhurst DC, Williams JE (1996) ACP Broadsheet no 148. July 1996. Laboratory diagnosis of malaria. J Clin Pathol 49:533–538

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wellems TE, Plowe CV (2001) Chloroquine-resistant malaria. J Infect Dis 184:770–776

    PubMed  CAS  Google Scholar 

  • White NJ, Pukrittayakamee S, Hien TT et al (2014) Malaria. Lancet 383:723–735

    PubMed  Google Scholar 

  • WHO (2010) Guidelines for the treatment of malaria. WHO, Geneva

    Google Scholar 

  • WHO (2011) Malaria rapid diagnostic test performance: summary results of WHO malaria RDT product testing: rounds 1–3 (2008–2011)

    Google Scholar 

  • WHO (2012) Global plan for insecticide resistance management in malaria vectors. WHO, Geneva

    Google Scholar 

  • WHO (2013) World malaria report. WHO, Geneva

    Google Scholar 

  • Wilson ML (2012) Malaria rapid diagnostic tests. Clin Infect Dis 54:1637–1641

    PubMed  Google Scholar 

  • Wu Y, Ellis RD, Shaffer D et al (2008) Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PLoS One 3:e2636

    PubMed  PubMed Central  Google Scholar 

  • Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S et al (2003) Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Biol 10:357–365

    PubMed  CAS  Google Scholar 

  • Zhang M, Hisaeda H, Kano S et al (2001) Antibodies specific for heat shock proteins in human and murine malaria. Microbes Infect 3:363–367

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoletta Basilico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basilico, N., Spaccapelo, R., D’Alessandro, S. (2015). Malaria Diagnosis, Therapy, Vaccines, and Vector Control. In: Prato, M. (eds) Human and Mosquito Lysozymes. Springer, Cham. https://doi.org/10.1007/978-3-319-09432-8_2

Download citation

Publish with us

Policies and ethics