Skip to main content

Spectrum of Solar Cosmic Rays Near the Earth

  • Chapter
  • First Online:
Book cover Solar Cosmic Rays

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 405))

  • 1294 Accesses

Abstract

As it was postulated in Chap. 1, an energy distribution (or a shape of the energy spectrum) of solar cosmic rays (SCR) is of great significance for the formulation of self-consistent model of particle acceleration at the Sun. In turn, the main problems of fundamental interest in the theory of particle acceleration at the Sun lie now at two boundary domains of SCR spectra, namely, in low-energy (non-relativistic) and high-energy (relativistic) ranges. The most important of them are: initial acceleration from the thermal background (see, e.g., Vlahos et al. 1989; Simnett 1995; Miroshnichenko 1995; Miller et al. 1997) and final stage of acceleration to extremely high energies (see, e.g., Miroshnichenko 1994, 1996; Karpov et al. 1995a, b, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JH Jr, Gelman A (1984) The effects of solar flares on single event upset rates. IEEE Trans Nucl Sci NS-31(6):1212–1216

    Article  ADS  Google Scholar 

  • Adriani O, Barbarino GC, Bazilevskaya GA et al; Collaboration PAMELA (2011) Observations of the 2006 December 13 and 14 solar particle events in the 80 MeV/n – 3 GeV/n range from space with the PAMELA detector. Astrophys J 742:102 (11 pp). doi:10.1088/0004-637X/742/2/102

  • Ahluwalia HS, Xue SS (1993) Mean attenuation length for solar proton of 29 September 1989. In: Proceedings of 23rd international cosmic ray conference, vol 3. Calgary, pp 757–760

    Google Scholar 

  • Akimov VV, Afanassyev VG, Belousov AS et al (in all 34 authors) (1991) Observation of high energy gamma-rays from the Sun with the GAMMA-1 telescope (E > 30 MeV). In: Proceedings of 22nd international cosmic ray conference, vol 3. Dublin, pp 73–76

    Google Scholar 

  • Akinyan ST, Bazilevskaya GA, Ishkov VN et al (in all 10 authors) (1983) In: Logachev YuI (ed) Catalogue of solar proton events 1970–1979. IZMIRAN, Moscow, Nauka, p 184

    Google Scholar 

  • Alexeyev EN, Karpov SN (1993) Short-term increases of muon intensity at Baksan Underground Scintillation Telescope correlated with solar flares? In: Proceedings of 23rd international cosmic ray conference, vol 3. Calgary, pp 167–170

    Google Scholar 

  • Alexeyev EN, Karpov SN (1994) Short-term bursts of muon intensity at the Baksan Underground Scintillation Telescope. Geomagn Aeron 34(2):143–147

    ADS  Google Scholar 

  • Alexeyev EN, Zakidyshev VN, Karpov SN (1992) Analysis of data of Baksan Underground Scintillation Telescope recorded during the September 29, 1989 solar flare. Geomagn Aeron 32(5):189–191

    ADS  Google Scholar 

  • Andriopoulou M, Mavromichalaki H, Plainaki C, Belov A, Eroshenko E (2011) Intense Ground- Level Enhancements of solar cosmic rays during the last solar cycles. Solar Phys 269:155–168

    Article  ADS  Google Scholar 

  • Armstrong T (1993) National Space Science Data Centre (NASA/GSFC), Data Set 73-078A- 08G-IMP8 H and J

    Google Scholar 

  • Bazilevskaya GA (1984) Solar protons with the energy above 100 MeV by the data of measurements in the stratosphere. Doctoral dissertation, Physical Lebedev Institute (FIAN), Moscow

    Google Scholar 

  • Bazilevskaya GA, Golynskaya RM (1989) The propagation of solar cosmic rays in the interplanetary medium with adiabatic focusing taken into account. Geomagn Aeron 29(2):204–209

    ADS  Google Scholar 

  • Bazilevskaya GA, Makhmutov VS (1983) Determination of absolute fluxes of solar protons with E >100 MeV based on the data of measurements in the stratosphere and by neutron monitors. Geomagn Aeron 23(3):373–377

    ADS  Google Scholar 

  • Bazilevskaya GA, Makhmutov VS (1988) An upper limit to the energy of particles accelerated in a solar flare. Geomagn Aeron 28(2):169–172

    ADS  Google Scholar 

  • Bazilevskaya GA, Vashenyuk EV, Ishkov VN et al (in all 10 authors) (1986) In: Logachev YuI (ed) Catalogue of energetic spectra of solar proton events 1970–1979. IZMIRAN, Moscow, Nauka, p 235

    Google Scholar 

  • Bazilevskaya GA, Vashenyuk EV, Ishkov VN et al (in all 10 authors) (1990a) Catalogue of solar proton events 1980–1986, (ed) Logachev YuI, Moscow, World Data Center B-2, p 160 (part I), p 204 (part II).

    Google Scholar 

  • Bednazhevsky VM, Miroshnichenko LI (1982) Integral multiplicities of generation for the neutron component and accuracy of estimation the spectrum of solar cosmic rays. Geomagn Aeron 22(1):125–126

    ADS  Google Scholar 

  • Belov AV, Eroshenko EA (1996) Proton spectra of the four remarkable GLEs in the 22nd Solar Cycle. Radiat Meas 26(3):461–466

    Article  Google Scholar 

  • Belov A, Kurt V, Mavromichalaki H, Garcia H, Gerontidou M (2005a) Proton enhancements and their relations to the X-ray flares during the three last solar cycles. Solar Phys 229:135–159. doi:10.1007/s11207-005-4721-3

    Article  ADS  Google Scholar 

  • Belov A, Eroshenko E, Mavromichalaki H, Plainaki C, Yanke V (2005b) A study of the ground level enhancement of 23 February 1956. Adv Space Res 35:697–701

    Article  ADS  Google Scholar 

  • Bhattacharya R, Barman P, Roy M (2013) Response of neutron monitors to cosmic ray counts: a statistical approach. Int J Eng Sci Techn (IJEST) 5(09):1713–1721

    Google Scholar 

  • Bieber JW, Evenson PA (1991) Determination of energy spectra for the large solar particle events of 1989. In: Proceedings of 22nd international cosmic ray conference, vol 3. Dublin, pp 129–132

    Google Scholar 

  • Bieber JW, Wanner W, Matthaeus WH (1995) 2D turbulence and the quasilinear theory “discrepancy”. In: Proceedings of 24th international cosmic ray conference, vol 4. Rome, pp 269–272

    Google Scholar 

  • Vashenyuk EV, Pchelkin VV (1998) The GLE of September 29, 1989 study by computations and experimental data analysis. In: Medina J (ed) Rayos comicos-98 (proceedings of 16th European cosmic ray symposium). Alcala University Press, Alcalá de Henares, pp 145–148

    Google Scholar 

  • Bombardieri DJ, Duldig ML, Michael KJ, Humble JE (2006) Relativistic proton production during the 2000 July 14 solar event: the case for multiple source mechanisms. Astrophys J 644:565–574

    Article  ADS  Google Scholar 

  • Carmichael H (1968) Cosmic rays (instruments). In: Annals of the IQSY, vol 1. MIT Press, Cambridge, MA, pp 178–197

    Google Scholar 

  • Charakhchyan AN, Bazilevskaya GA, Svirzhevskaya AK, Stozhkov YI, Charakhchyan TN (1973) 11-year cycle of intensity of cosmic rays in the stratosphere and its dependence upon solar activity. Izv AN SSSR Phys Ser 37(6):1258–1263

    Google Scholar 

  • Clem JM, Dorman LI (2000) Neutron monitor response functions. Space Sci Rev 93:335–359. doi:10.1023/A:1026508915269

    Article  ADS  Google Scholar 

  • Cliver EW, Kahler SW, Vestrand WT (1993b) On the origin of gamma-ray emission from the behind-the-limb flare on 29 September 1989. In: Proceedings of 23rd international cosmic ray conference, vol 3. Calgary, pp 91–94

    Google Scholar 

  • Cramp JL, Duldig ML, Humble JE (1993a) The GLE of 29 September 1989. In: Proceedings of 23rd international cosmic ray conference, vol 3. Calgary, pp 47–50

    Google Scholar 

  • Cramp JL, Duldig ML, Humble JE (1993b) The GLE of 22 October 1989. In: Proceedings of 23rd international cosmic ray conference, vol 3. Calgary, pp 51–54

    Google Scholar 

  • Cramp JL, Duldig ML, Flückiger EO, Humble JE, Shea MA, Smart DF (1997) The October 22, 1989, solar cosmic ray enhancement: an analysis of the anisotropy and spectral characteristics. J Geophys Res 102(A11):24237–24248

    Article  ADS  Google Scholar 

  • De Koning CA (1994) Analysis of the ground level enhancement of September 29, 1989. Master’s thesis, University of Calgary, Calgary

    Google Scholar 

  • Debrunner H, Flückiger EO, Lockwood JA (1982) Response of neutron monitors to solar cosmic rays events. In: 8th European cosmic ray symposium, book of abstracts, Rome

    Google Scholar 

  • Debrunner H, Flückiger EO, Lockwood JA, McGuire RE (1984) Comparison of the solar cosmic ray events on May 7, 1978 and November 22, 1977. J Geophys Res 89(A2):769–774

    Article  ADS  Google Scholar 

  • Dennis J, Schnabel R (1988) Numerical methods of absolute optimization and resolution of non-linear equations. Moscow, Mir, 440 pp

    Google Scholar 

  • Dodson HW, Hedeman ER, Kreplin RW et al (in all 8 authors) (1975) In: Svestka Z, Simon P (ed) Catalogue of solar proton events 1955–1969. D. Reidel Publ. Co., Dordrecht, 430 pp

    Google Scholar 

  • Dorman LI, Miroshnichenko LI (1966) On a procedure for determining the solar cosmic ray spectrum in the range of high energies. Geomagn Aeron 6(2):215–222

    Google Scholar 

  • Dorman LI, Miroshnichenko LI (1968) Solar cosmic rays. Moscow, Nauka, Fizmatgiz, pp 468 (in Russian). English Edition for NASA by Indian National Scientific Documentation Center, Delhi, 1976

    Google Scholar 

  • Duggal SP (1979) Relativistic solar cosmic rays. Rev Geophys Space Res 17(5):1021–1058

    Article  ADS  Google Scholar 

  • Dvornikov VM, Sdobnov VE (1993) A spectrographic global survey technique for studying cosmic-ray distribution function variations and the planetary system of geomagnetic cutoff rigidities. In: Proceedings of 23rd international cosmic ray conference, vol 3. Calgary, pp 797–800

    Google Scholar 

  • Dvornikov VM, Sdobnov VE (1995a) The GLE of 29 September 1989: time variations of the cosmic-ray rigidity spectrum. In: Proceedings of 24th international cosmic ray conference, vol 4. Rome, pp 232–235

    Google Scholar 

  • Dvornikov VM, Sdobnov VE (1995b) The GLE of 29 September 1989: time variations in angular distribution of different-energy particles. In: Proceedings of 24th international cosmic ray conference, vol 4. Rome, pp 2362–2239

    Google Scholar 

  • Dvornikov VM, Sdobnov VE (1997) Time variations of the cosmic ray distribution function during a solar proton event of September 29, 1989. J Geophys Res 102(A11):24209–24219

    Article  ADS  Google Scholar 

  • Dvornikov VM, Sdobnov VE (1998) Analyzing the solar proton event of 22 October 1989, using the method of spectrographic global survey. Solar Phys 178:405–422

    Article  ADS  Google Scholar 

  • Dvornikov VM, Sdobnov VE, Sergeev AV (1983) Analysis of cosmic ray pitch angle anisotropy during the Forbush-effect in June 1972 by the method of spectrographic global survey. In: Proceedings of 18th international cosmic ray conference, vol 3. Bangalore, pp 249–252

    Google Scholar 

  • Ellison DC, Ramaty R (1985) Shock acceleration of electrons and ions in solar flares. Astrophys J 298:400–408

    Article  ADS  Google Scholar 

  • Filippov AT, Krivoshapkin PA, Transky IA, Kuzmin AI, Krymsky GF, Niskovskikh AS, Berezhko EG (1991) Solar cosmic ray flare on September 29, 1989 by data of the Yakutsk Array Complex. In: Proceedings of 22nd international cosmic ray conference, vol 3. Dublin, pp 113–116

    Google Scholar 

  • Firoz KA, Cho K-S, Hwang J et al (2010) Characteristics of ground-level enhancement- associated solar flares, coronal mass ejections, and solar energetic particles. J Geophys Res 115:A09105

    ADS  Google Scholar 

  • Flückiger EO (1994) Open questions in the analysis and interpretation of neutron monitor data. In: 14th European cosmic ray symposium, Balatonfured, Hungary, August 28–September 3, 1994. Symposium program and abstracts. Contributed paper 1-SH-13C. Balatonfured

    Google Scholar 

  • Flückiger EO, Kobel E (1990) Aspects of combining models of the Earth’s internal and external magnetic field. J Geomagn Geolectr 42:1123–1136

    Article  ADS  Google Scholar 

  • Forman MA, Ramaty R, Zweibel E (1986) The acceleration and propagation of solar flare energetic particles: Ch.II. In: Sturrock PA (ed) Physics of the Sun. D. Reidel Publ. Co., Dordrecht, pp 249–289

    Google Scholar 

  • Heristchi D, Trottet G, Perez-Peraza J (1976) Upper cutoff of high energy solar protons. Solar Phys 49(2):151–175

    ADS  Google Scholar 

  • Humble JE, Duldig ML, Smart DF, Shea MA (1991a) Detection of 0.5-15 GeV solar protons on 29 September 1989 at Australian stations. Geophys Res Lett 18(4):737–740

    Article  ADS  Google Scholar 

  • Humble JE, Duldig ML, Smart DF, Shea MA (1991b) The 29 September 1989 event as observed by Australian stations. In: Proceedings of 22nd international cosmic ray conference, vol 3. Dublin, pp 109–112

    Google Scholar 

  • Ilencik J (1979) Analysis of solar cosmic ray increases during the 20th cycle of solar activity. Candidate dissertation, Ustav Experimentalnei Fyziky SAV, Kosice

    Google Scholar 

  • Ilencik J, Dubinsky J, Miroshnichenko LI (1978) Absolute spectra of solar cosmic rays for the Ground Level Events of 1966–1976, Physica Solariterrestris, Potsdam, No.8, pp 11–20

    Google Scholar 

  • Kahler SW, Smart DF, Sauer H (1997) Temporal variation of shock-accelerated proton/alpha ratios at E ≥100 MeV/n in a large solar energetic particle event. In: Proceeding of 25th international cosmic ray conference, vol 1. Durban, pp 305–308

    Google Scholar 

  • Kaminer NS (1967) On taking into account the barometric effect of the neutron component during cosmic ray flares. Geomagn Aeron 7(5):806–809

    Google Scholar 

  • Kanbach G, Bertsch DL, Fichtel CE et al (in all 19 authors) (1993) Detection of a long- duration solar gamma-ray flare on June 11, 1991 with EGRET on COMPTON-GRO. Astron Astrophys Suppl Ser. 97:349–353

    Google Scholar 

  • Karpov SN, Miroshnichenko LI, Vashenyuk EV (1995a) On the possibility of observation of extremely high-energy particles by the Baksan Underground Scintillation Telescope during solar flares. Bull Acad Sci Russia Phys Ser 59:52–57 (in Russian)

    Google Scholar 

  • Karpov SN, Miroshnichenko LI, Vashenyuk EV (1995b) Extremely high-energy solar protons by the data of Baksan Underground Scintillation Telescope’. In: Proceeding of 24th international cosmic ray conference, vol 4. Rome, pp 50–53

    Google Scholar 

  • Karpov SN, Miroshnichenko LI, Vashenyuk EV (1998) Muon bursts at the Baksan Underground Scintillation Telescope during energetic solar phenomena. Nuovo Cimento C 21(5):551–573

    ADS  Google Scholar 

  • Kepicova O, Miroshnichenko LI, Stehlik M (1982) Analysis of solar cosmic ray increases in September 1977 based on ground-level data, vol 19. Physica Solariterrestris, Potsdam, pp 40–52

    Google Scholar 

  • Klein K-L, Chupp EL, Trottet G, Magun A, Dunphy PP, Rieger E, Urpo S (1999) Flare-associated energetic particles in the corona and at 1 AU. Astron Astrophys 348:271–285

    ADS  Google Scholar 

  • Klein KL, Trottet G, Chupp EL, Dunphy PP, Rieger E (2000) Temporal evolution of a gradual SEP event and the possible role of coronal particle acceleration. In: Ramaty R, Mandzhavidze N (eds) High energy solar physics: anticipating HESSI, ASP conference series, vol 206. pp 112–117

    Google Scholar 

  • Kohno T (1991) Solar proton intensity magnitudes of large flares on fall 1989 observed at synchronous orbit. In: Proceeding of 22nd international cosmic ray conference, vol 3. Dublin, pp 125–128

    Google Scholar 

  • Krymsky GF, Kuzmin AI, Krivoshapkin PA, Starodubtsev SA, Transky IA, Filippov AT (1990) The exceptional cosmic ray burst of September 29, 1989, as indicated by data from the Yakutsk Array Complex. Trans (Doklady) USSR Acad Sci 314:20–22

    Google Scholar 

  • Krymsky GF, Grigor’ev VG, Starodubtsev SA (2008) New method for estimating the absolute flux and energy spectrum of solar cosmic rays according to the neutron monitor data. Pis’ma Zh Eksp Teor Fiz 88(7):483–485

    Google Scholar 

  • Kuzmin AI, Filippov AT, Chirkov NP (1983) Large-scale disturbances of solar wind and cosmic ray acceleration in interplanetary space. Izv AN SSSR Phys Ser 47:1703–1706

    Google Scholar 

  • Lockwood JA, Webber WR, Hsieh L (1974) Solar flare proton rigidity spectra deduced from cosmic ray neutron monitor observations. J Geophys Res 79(28):4149–4185

    Article  ADS  Google Scholar 

  • Lovell JL, Duldig ML, Humble JE (1998) An extended analysis of the September 1989 cosmic ray ground level enhancement. J Geophys Res 103(A10):23733–23742

    Article  ADS  Google Scholar 

  • McCracken KG (1962a) The cosmic-ray flare effect. 1. Some new methods of analysis. J Geophys Res 67(2):423–434

    Article  ADS  Google Scholar 

  • Miller JA, Cargill PJ, Emslie AG, Holman GD, Dennis BR, LaRosa TN, Winglee RM, Benka SG, Tsuneta S (1997) Critical issues for understanding particle acceleration in impulsive solar flares. J Geophys Res 102(A7):14631–14659

    Article  ADS  Google Scholar 

  • Miroshnichenko LI (1970) On the absolute fluxes of particles accelerated at the Sun on February 23, 1956. Geomagn Aeron 10(5):898–900

    Google Scholar 

  • Miroshnichenko LI (1971) On integral generation multiplicities for the spectrum calculation of solar cosmic rays. Geomagn Aeron 11(6):1083–1086

    Google Scholar 

  • Miroshnichenko LI (1983c) Sources of methodical errors in estimating spectrum of solar cosmic rays. In: Cosmic rays, vol 22. Radio i Svyaz, Moscow, pp 69–78

    Google Scholar 

  • Miroshnichenko LI (1987) Dynamics and energetics of accelerated particles in solar flares. In: Shcherbina-Samoilova IS (ed) Solar flares, vol 34. VINITI, Moscow, pp 238–277

    Google Scholar 

  • Miroshnichenko LI (1990) Dynamics and prediction of radiation characteristics of solar cosmic rays, Doctoral dissertation. IZMIRAN, Moscow, p 326

    Google Scholar 

  • Miroshnichenko LI (1992b) Cyclic variations and sporadic fluctuations of solar cosmic radiation. Biophysics 37(3):364–377

    Google Scholar 

  • Miroshnichenko LI (1994) On the ultimate capabilities of particle accelerators on the Sun. Geomagn Aeron 34(4):29–37

    ADS  Google Scholar 

  • Miroshnichenko LI (1995) On the threshold effect of proton acceleration in solar flares. Solar Phys 156(1):119–129

    Article  ADS  Google Scholar 

  • Miroshnichenko LI (1996) Empirical model for the upper limit spectrum for solar cosmic rays at the Earth’s orbit. Radiat Meas 26(3):421–425

    Article  Google Scholar 

  • Miroshnichenko LI, Petrov VM (1985) Dynamics of radiation conditions in space. Energoatomizdat, Moscow, p 152 (in Russian)

    Google Scholar 

  • Miroshnichenko LI, Petrov VM, Tibanov AP (1973) Determination and interpretation of solar proton spectra near the Earth and in the source. Izv AN SSSR Phys Ser 37(6):1174–1180

    Google Scholar 

  • Miroshnichenko LI, Perez-Peraza J, Alvarez-Madrigal M, Sorokin MO, Vashenyuk EV, Gallegos-Cruz A (1990) Two relativistic solar proton components in some SPEs. In: Proceeding of 21st international cosmic ray conference, vol 5. Adelaide, pp 5–8

    Google Scholar 

  • Miroshnichenko LI, Rodriguez-Frias MD, del Peral L, Perez-Peraza J, Vashenyuk EV (1995c) Absolute proton fluxes from the Sun at rigidity above 1 GV by ground-bases data. In: Proceeding of 24th international cosmic ray conference, vol 4. Rome, pp 54–57

    Google Scholar 

  • Miroshnichenko LI, Mendoza B, Perez-Enriquez R (1999) Energy spectra of accelerated solar protons from different sources: I. Reconstruction and properties of the source spectrum. Solar Phys 186(1-2):381–400

    Article  ADS  Google Scholar 

  • Miroshnichenko LI, de Koning CA, Perez-Enriquez R (2000) Large solar event of September 29, 1989: ten years after. Space Sci Rev 91(3–4):615–715

    Article  ADS  Google Scholar 

  • Nagashima K, Sakakibara S, Murakami K, Morishita I (1989) Response and yield functions of neutron monitor, galactic cosmic-ray spectrum and its solar modulation, derived from all the available world-wide surveys. Nuovo Cimento C 12C(2):173–209

    Article  ADS  Google Scholar 

  • Nazarova MN, Pereyaslova NK, Petrenko IE (1992) Solar protons in 22nd cycle of solar activity. Geomagn Aeron 32(5):23–28

    ADS  Google Scholar 

  • Papaioannou A, Souvatzoglou G, Paschalis P, Gerontidou M, Mavromichalaki H (2014) The first ground-level enhancement of solar cycle 24 on 17 May 2012 and its real-time detection. Solar Phys 289:423–436. doi:10.1007/s11207-013-0336-2

    Article  ADS  Google Scholar 

  • Pchelkin VV, Vashenyuk EV, Ostapenko AA, Maltsev YP (2000) Relativistic SCR in the event of 7–8 December 1982. Factor of magnetospheric disturbance at the analysis based on neutron monitor data. Geomagn Aeron 40(5):39–44

    Google Scholar 

  • Plainaki C, Mavromichalaki H, Belov A, Eroshenko E, Andriopoulou M, Yanke V (2010) A new version of the neutron monitor based anisotropic GLE model: application to GLE60. Solar Phys 264:239–254. doi:10.1007/s11207-010-9576-6

    Article  ADS  Google Scholar 

  • Shea MA, Smart DF (1982) Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci Rev 32(1/2):251–271

    ADS  Google Scholar 

  • Simnett GM (1991) Energetic particle production in flares. Phil Trans Roy Soc London A336(1643):439–450

    Article  ADS  Google Scholar 

  • Simnett GM (1995) Protons in flares. Space Sci Rev 73:387–432

    Article  ADS  Google Scholar 

  • Simpson JA (1948) The latitude dependence of neutron densities in the atmosphere as a function of altitude. Phys Rev 73:1389

    Article  ADS  Google Scholar 

  • Sladkova AI, Bazilevskaya GA, Ishkov VN et al (in all 8 authors) (1998) In: Logachev YuI (ed) Catalogue of solar proton events 1987–1996. Moscow University Press, Moscow, 246 pp

    Google Scholar 

  • Smart DF, Shea MA (1989b) Solar proton events during the past three solar cycles. J Spacecraft Rockets 26(6):403–415

    Google Scholar 

  • Smart DF, Shea MA (1990b) Probable pitch angle distribution and spectra of the 23 February 1956 solar cosmic ray event. In: Proceedings of 21st international cosmic ray conference, vol 5. Adelaide, pp 257–260

    Google Scholar 

  • Smart DF, Shea MA (1991) A comparison of the magnitude of the 29 September 1989 high energy event with solar cycle 17, 18 and 19 events. In: Proceedings of 22nd international cosmic ray conference, vol 3. Dublin, pp 101–104

    Google Scholar 

  • Smart DF, Shea MA, Wilson MD, Gentile LC (1991) Solar cosmic rays on 29 September 1989: An analysis using the world-wide network of cosmic ray stations. In: Proceedings of 22nd international cosmic ray conference, vol 3. Dublin, pp 97–100

    Google Scholar 

  • Stoker PH (1995) Relativistic solar proton events. Space Sci Rev 73(3/4):327–385

    Article  ADS  Google Scholar 

  • Stozhkov YuI (1978) Global magnetic field of the Sun and effects in cosmic rays. In: Kocharov GE (ed) IX Leningrad international seminar on cosmophysics. Leningrad, pp 39–52

    Google Scholar 

  • Struminsky A, Belov A (1997) Neutron monitor sensitivity to primary protons below 3 GV derived from data of Ground Level Events. In: Proceedings of 25th international cosmic ray conference, vol 1. Durban, pp 201–204

    Google Scholar 

  • Swinson DB, Shea MA (1990) The September 29, 1989, ground level event observed at high rigidity. Geophys Res Lett 17(8):1073–1075

    Article  ADS  Google Scholar 

  • Toptygin IN (1985) Cosmic rays in interplanetary magnetic fields. D. Reidel Publ. Co., Dordrecht, p 375

    Book  Google Scholar 

  • Tsyganenko NA (1989) A magnetospheric magnetic field model with a warped tail current sheet. Planet Space Sci 37:5–20

    Article  ADS  Google Scholar 

  • Vashenyuk EV, Miroshnichenko LI (1998) Characteristics of generation and transport of solar protons during the event of September 29, 1989. Geomagn Aeron 38(2):129–135

    Google Scholar 

  • Vashenyuk EV, Miroshnichenko LI, Perez-Peraza J, Kananen H, Tanskanen P (1997) Generation and propagation characteristics of relativistic protons during the GLE of September 29, 1989. In: Proceedings of 25th international cosmic ray conference, vol 1. Durban, pp 161–164

    Google Scholar 

  • Vashenyuk EV, Miroshnichenko LI, Gvozdevsky BB (2000) Proton energy spectrum and source parameters of the September 29, 1989 event. Nuovo Cim 23(3):285–291

    ADS  Google Scholar 

  • Vashenyuk EV, Pchelkin VV, Miroshnichenko LI (2001) Flux and spectrum dynamics of relativistic protons inferred from modeling ground-level increases in the event of September 29, 1989. Izv RAN Phys Ser 65(3):350–352

    Google Scholar 

  • Vashenyuk EV, Balabin YuV, Gvozdevsky BB (2009) Characteristics of relativistic solar cosmic rays from GLE modeling studies. In: Proceedings of 31st international cosmic ray conference, Łodz. Paper 1304

    Google Scholar 

  • Vashenyuk EV, Balabin YV, Gvozdevsky BB (2011) Features of relativistic solar proton spectra derived from GLE modeling. Astrophys Space Sci Trans 7:459–463

    Article  ADS  Google Scholar 

  • Vlahos L, Machado ME, Ramaty R et al (in all 28 authors) (1989) Chapter 2: Particle acceleration. In: Kundu M, Woodgate B, Schmahl EJ (eds) Energetic phenomena on the sun. Astrophysics and space science library. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 131–224

    Google Scholar 

  • Wilkinson DC (1992) GOES space environment monitor, format description for 1- and 5-minute averaged data, GOES data distribution disk

    Google Scholar 

  • Wilson BG, Mathews T, Johnson RH (1967) Intercomparison of neutron monitors during solar-flare increases. Phys Rev Lett 18(16):675–676

    Article  ADS  Google Scholar 

  • Yanke VG (1980) On the theory of geophysical effects of the secondary cosmic radiation. Candidate dissertation, IZMIRAN, Moscow, 198 pp

    Google Scholar 

  • Zusmanovich AG, Shvartsman YE (1989) Solar cosmic rays of high energies. Geomagn Aeron 29(3):353–358

    ADS  Google Scholar 

  • Baisultanova LM, Belov AV, Dorman LI, Yanke VG (1987) Magnetospheric effects in cosmic rays during Forbush-Decreases. In: Proceedings of 20th international cosmic ray conference, vol 4. Moscow, pp 231–234

    Google Scholar 

  • Danilova OA, Tyasto MI, Vashenyuk EV, Gvozdevsky BB, Kananen H, Tanskanen P (1999) The GLE of May 2, 1998: an effect of disturbed magnetosphere on solar cosmic rays. In: Proceedings of 26th international cosmic ray conference, vol 6. Salt Lake City, pp 399–402

    Google Scholar 

  • Krymsky GF, Kuzmin AI, Krivoshapkin PA, Samsonov IS, Skripin GV, Transky IA, Chirkov NP (1981). In: Shafer GV (ed) Cosmic rays and solar wind, Nauka, Novosibirsk, p 224 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miroshnichenko, L. (2015). Spectrum of Solar Cosmic Rays Near the Earth. In: Solar Cosmic Rays. Astrophysics and Space Science Library, vol 405. Springer, Cham. https://doi.org/10.1007/978-3-319-09429-8_9

Download citation

Publish with us

Policies and ethics