Advertisement

Workspace Analysis for Evaluating Laparoscopic Instruments

  • J.-H. BorchardEmail author
  • F. Dierßen
  • J. Kotlarski
  • L. A. Kahrs
  • T. Ortmaier
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 24)

Abstract

Laparo-endoscopic surgery is the treatment of choice in a variety of intra-abdominal interventions, leading to lower infection risk, shorter recovery time, and smaller scars. This paper presents a method for quantifying workspaces of instruments in laparoscopic surgery. In contrast to most existing approaches, the proposed performance criterion combines the executable positions and orientations of the instrument’s functional end. Together with both, an intervention specific workspace and consideration of collisions between instruments, the introduced criterion is suitable to evaluate and compare laparoscopic instruments and systems quantitatively. A three-dimensional, color-scale visualization of the criterion helps analyzing laparoscopic instruments or systems. The presented methods are evaluated with instruments of the da Vinci Surgical System by Intuitive Surgical, Inc. While evaluating the presented performance criterion, the workspace dependency of EndoWrist instruments under influence of different distances of trocar points is demonstrated and quantified.

Keywords

Kinematic evaluation Workspace Medical devices Laparoscopic surgery 

References

  1. 1.
    Guthart GS, Salisbury JK (2000) The IntuitiveTM telesurgery system: overview and application. In: Proceedings of the IEEE international conference on robotics and automation. pp. 618–621, San Francisco, CA. ISBN: 0-7803-5886-4Google Scholar
  2. 2.
    Ahmed K, Wang TT, Patel VM, Nagpal K, Clark J, Ali M, Deeba S, Ashrafian H, Darzi A, Athanasiou T, Paraskeva P (2011) The role of single-incision laparoscopic surgery in abdominal and pelvic surgery: a systematic review. Surg Endosc 25(2):378–396CrossRefGoogle Scholar
  3. 3.
    Rao PP, Rao PP, Bhagwat S (2011) Single-incision laparoscopic surgery—current status and controversies. J Minim Access Surg 7(1):6Google Scholar
  4. 4.
    Escobar PF, Haber GP, Kaouk J, Kroh M, Chalikonda S, Falcone T (2011) Single-port surgery: laboratory experience with the daVinci single-site platform. J Soc Laparoendosc Surg 15(2):136CrossRefGoogle Scholar
  5. 5.
    Petroni G, Niccolini M, Menciassiz A, Dario P, Cuschieri A (2013) A novel intracorporeal assembling robotic system for single-port laparoscopic surgery. Surg Endosc 27(2):665–670CrossRefGoogle Scholar
  6. 6.
    Ding J, Goldman R, Xu K, Allen P, Fowler D, Simaan N (2013) Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery. In: Proceedings of the IEEE/ASME transactions on mechatronicsGoogle Scholar
  7. 7.
    Deutschmann B, Konietschke R, Albu-Schauffer A (2013) Task-specific evaluation of kinematic designs for instruments in minimally invasive robotic surgery. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS)Google Scholar
  8. 8.
    Clinical Advantages of the da Vinci S and da Vinci Si Systems Compared to the Standard da Vinci System. Intuitive Surgical Inc. (2009) Google Scholar
  9. 9.
    Xu K, Goldman RE, Ding J, Allen PK, Fowler DL, Simaan N (2009) System design of an insertable robotic effector platform for single port access (SPA) surgery. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS)Google Scholar
  10. 10.
    Borchard JH, Kotlarski J, Ortmaier T (2013) Workspace comparison of cooperating instruments in laparo-endoscopic single-site surgery. In: Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics (AIM)Google Scholar
  11. 11.
    Petitt JD, Miller K (2003) Sixdimensional visualisation of end-effector pose using colour spaces. In: Proceedings of the Australian conference on robotics and automationGoogle Scholar
  12. 12.
    Zacharias F (2012) Knowledge representations for planning manipulation tasks. Springer, BerlinCrossRefGoogle Scholar
  13. 13.
    Ragupathi M, Ramos-Valadez DI, Pedraza R, Haas EM (2010) Robotic assisted single incision laparoscopic partial cecectomy. Int J Med Rob Comput Assis Surg 6(3):362–367CrossRefGoogle Scholar
  14. 14.
    White MA, Haber GP, Kaouk JH (2010) Robotic single-site surgery. Curr Opin Urol 20(1):86–91CrossRefGoogle Scholar
  15. 15.
    Kishk SM, Darweesh RM, Dodds WJ, Lawson TL, Stewart ET, Kern MK, Hassanein EH (1987) Sonographic evaluation of resting gallbladder volume and postprandial emptying in patients with gallstones. AJR Am J Roentgenol 148(5):875–879CrossRefGoogle Scholar
  16. 16.
    Ko SY, Kim J, Lee WJ, Kwon DS (2007) Compact laparoscopic assistant robot using a bending mechanism. Adv Robot 21(5–6):689–709CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • J.-H. Borchard
    • 1
    Email author
  • F. Dierßen
    • 1
  • J. Kotlarski
    • 1
  • L. A. Kahrs
    • 1
  • T. Ortmaier
    • 1
  1. 1.Institute of Mechatronic SystemsLeibniz Universität HannoverHanoverGermany

Personalised recommendations