On the Resolution of Forward Kinematic Problem Using CAD Graphical Techniques: Application on Planar Parallel Robotic Manipulators

  • K. A. ArroukEmail author
  • B. C. Bouzgarrou
  • G. Gogu
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 24)


The existence of singularity-free trajectories joining different assembly modes of a parallel robotic manipulator is a crucial property that permits to have a large effective workspace. The investigation of such a characteristic requires considering the forward kinematics problem. In this paper, an original method for forward kinematics resolution and singularity-free trajectory planning between different assembly modes is presented. The proposed method is based on a pure geometric approach and exploits the CAD environments utilities for geometric entity manipulations such as Boolean operations. The developments presented herein are mainly performed on 3-RPR planar parallel robot (PPR) and can be extended to several 3-DOF PPRs providing some adaptations.


Forward kinematic problem (FKP) Computer-aided design (CAD) techniques Planar parallel robot (PPRs) Singularity-free trajectory planning Coupler curves NURBS surfaces 



This work is supported financially by the Excellence Laboratory “LabEX” IMobS3 of Clermont-Ferrand, and the Research National Agency.


  1. 1.
    Arrouk KA (2012) Techniques de Conception Assistées par Ordinateur (CAO) pour la caractérisation de l’espace de travail de robots manipulateurs parallèles. Ph.D. Thesis, Unversity Blaise PASCAL-Clermont II, Institut PASCALGoogle Scholar
  2. 2.
    Arrouk KA et al (2012) CAD based geometric procedures for workspace and singularity determination of the 3-RPR parallel manipulator. In: Gogu G, Maniu I, Lovasz E-C, Fauroux J-C, Ciupe V (eds), Mechanisms, mechanical transmissions and robotics, pp 131–140, Trans Tech Publications, ISBN 978-3-03785-395-5Google Scholar
  3. 3.
    Gosselin C et al (1992) Polynomial solutions to the direct kinematic problem of planar 3-DOF parallel manipulators. Mech Mach Theor 27(2):107–119CrossRefGoogle Scholar
  4. 4.
    Hayes MJD et al (2004) Kinematic analysis of general planar parallel manipulators. ASME J Mech Des 126(5):866–874CrossRefGoogle Scholar
  5. 5.
    Husty ML (1995) Kinematic mapping of planar three-legged platforms. In: Proceedings of 15th Canadian congress of applied mechanics CANCAM, Victoria, Br. Columbia, Canada, vol 2, pp 876–877Google Scholar
  6. 6.
    Kilit O (2010) A new geometric algorithm for direct position analysis of planar 3-RRR manipulator. In: Proceedings of international symposium of mechanism and machine science IFToMM, Turkey, pp 396–402Google Scholar
  7. 7.
    Kinzel EC et al (2006) Kinematic synthesis for finitely separated positions using geometric constraint programming. ASME J Mech Des 128(5):1070–1079CrossRefGoogle Scholar
  8. 8.
    Pennock GR, Kassner DJ (1992) Kinematic analysis of a planar eight-bar linkage: application to a platform type robot. ASME J Mech Des 114(1):87–95CrossRefGoogle Scholar
  9. 9.
    Rojas N, Thomas F (2011) The forward kinematics of 3-RPR planar robots: a review and a distance-based formulation. IEEE Trans Rob 27(1):143–150CrossRefGoogle Scholar
  10. 10.
    Rojas N, Thomas F (2013) The univariate closure conditions of all fully parallel planar robots derived from a single polynomial. IEEE Trans Rob 29(3):758–765CrossRefGoogle Scholar
  11. 11.
    Tancredi L, Teillaud M (1999) Application de la géométrie synthétique au problème de modélisation géométrique directe des robots parallèles. Mech Mach Theor 34:255–269CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Zein M et al (2008) Non-singular assembly mode changing motions for 3-RPR parallel manipulators. Mech Mach Theory 43(4):480–490CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Clermont Université, Pascal InstituteClermont-FerrandFrance

Personalised recommendations