Advertisement

Efficiency Analysis of Shifted Spur Gear Transmissions

  • A. Diez-Ibarbia
  • A. Fernández del Rincón
  • M. Iglesias
  • A. De Juan
  • P. García
  • F. ViaderoEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 24)

Abstract

A quasi-static analysis of a shifted spur gear transmission is presented in this work. With this study, the influence of the profile modifications and the dissipative effects on the efficiency is assessed. Among the dissipative effects, friction between teeth in presence of lubricant is studied in this work, because of its important effect on power losses in the operating conditions used. Friction forces have been implemented by means of a Coulomb’s model with a variable friction coefficient (VFC). One VFC formulation have been developed derived from the well-known Niemann formulation and compared with a second one developed by Hai Xu. The final aim is to assess the impact on the efficiency of both the frictional effect and the profile shifting.

Keywords

Efficiency Power losses Friction coefficient Load sharing Sliding velocity 

Notes

Acknowledgments

The authors would like to acknowledge the COST ACTION TU 1105 for supporting this research.

References

  1. 1.
    Anderson NE, Loewenthal SH (1981) Effect of geometry and operating conditions on spur gear system power loss. J Mech Des Trans ASME. 103(4):151–159CrossRefGoogle Scholar
  2. 2.
    Baglioni S, Cianetti F, Landi L (2012) Influence of the addendum modification on spur gear efficiency. Mech Mach Theory 49:216–233CrossRefGoogle Scholar
  3. 3.
    Diez-Ibarbia A, Fernández del Rincón A, Iglesias M, Viadero F (2013) Efficiency analysis of shifted spur gears. In: Proceedings of the second conference MeTrApp, BilbaoGoogle Scholar
  4. 4.
    Fernandez del Rincon A, Viadero F, Iglesias M, de-Juan A, García P, Sancibrian R (2012) Effect of cracks and pitting defects on gear meshing. Proc IMechE Part C J Mech Eng Sci 226(11):2805–2815Google Scholar
  5. 5.
    Fernandez Del Rincon A, Viadero F, Iglesias M, García P, De-Juan A, Sancibrian R (2013) A model for the study of meshing stiffness in spur gear transmissions. Mech Mach Theory 61:30–58CrossRefGoogle Scholar
  6. 6.
    Fernández A, Iglesias M, de-Juan A, García P, Sancibrián R, Viadero F (2014) Gear transmission dynamic: effects of tooth profile deviations and support flexibility. Appl Acoust 77(0):138–149 (3)Google Scholar
  7. 7.
    Höhn BR (2010) Improvements on noise reduction and efficiency of gears. Meccanica 45(3):425–437CrossRefzbMATHGoogle Scholar
  8. 8.
    Martin KF (1978) A review of friction predictions in gear teeth. Wear 49(2):201–238CrossRefGoogle Scholar
  9. 9.
    Michaelis K, Höhn BR, Hinterstoißer M (2011) Influence factors on gearbox power loss. Ind Lubr Tribol 63(1):46–55CrossRefGoogle Scholar
  10. 10.
    Ohlendorf H (1958) Verlustleistung und erwärmung von stirnrädern. Dissertation, TU MünchenGoogle Scholar
  11. 11.
    Sánchez MB (2013) Modelo de cálculo resistente de engranajes cilíndricos de alto grado de recubrimiento. Dissertation, UNEDGoogle Scholar
  12. 12.
    Xu H (2005) Development of a generalized mechanical efficiency prediction methodology for gear pairs. Dissertation, The Ohio State UniversityGoogle Scholar
  13. 13.
    Yada T (1997) Review of gear efficiency equation and force treatment. JSME Int J Ser C Dyn Control Rob Des Manuf 40(1):1–8Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Diez-Ibarbia
    • 1
  • A. Fernández del Rincón
    • 1
  • M. Iglesias
    • 1
  • A. De Juan
    • 1
  • P. García
    • 1
  • F. Viadero
    • 1
    Email author
  1. 1.Mechanical Engineering DepartmentUniversity of CantabriaSantanderSpain

Personalised recommendations