Skip to main content

Occlusion Detection via Structured Sparse Learning for Robust Object Tracking

  • Chapter
  • First Online:
Computer Vision in Sports

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 2233 Accesses

Abstract

Sparse representation based methods have recently drawn much attention in visual tracking due to good performance against illumination variation and occlusion. They assume the errors caused by image variations can be modeled as pixel-wise sparse. However, in many practical scenarios, these errors are not truly pixel-wise sparse but rather sparsely distributed in a structured way. In fact, pixels in error constitute contiguous regions within the object’s track. This is the case when significant occlusion occurs. To accommodate for nonsparse occlusion in a given frame, we assume that occlusion detected in previous frames can be propagated to the current one. This propagated information determines which pixels will contribute to the sparse representation of the current track. In other words, pixels that were detected as part of an occlusion in the previous frame will be removed from the target representation process. As such, this paper proposes a novel tracking algorithm that models and detects occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Extensive experimental results show that our proposed tracker consistently outperforms the state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 798–805

    Google Scholar 

  2. Avidan, S (2005) Ensemble tracking. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 494–501

    Google Scholar 

  3. Babenko B, Yang M-H, Belongie S (2009) Visual tracking with online multiple instance learning. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 983–990

    Google Scholar 

  4. Bao C, Wu Y, Ling H, Ji H (2012) Real time robust \(l_1\) tracker using accelerated proximal gradient approach. In: Proceedings of IEEE conference on computer vision and pattern recognition

    Google Scholar 

  5. Black MJ, Jepson AD (1998) Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vis 26(1):63–84

    Article  Google Scholar 

  6. Blasch E, Kahler B (2005) Multiresolution eoir target tracking and identification. In: International conference on information fusion, vol 8, pp 1–8

    Google Scholar 

  7. Chockalingam P, Pradeep N, Birchfield S (2009) Adaptive fragmentsbased tracking of non-rigid objects using level sets. In: ICCV

    Google Scholar 

  8. Collins RT, Liu Y (2003) On-line selection of discriminative tracking features. In: Proceedings of the IEEE international conference on computer vision, pp 346–352

    Google Scholar 

  9. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–575

    Article  Google Scholar 

  10. Dinh TB, Vo N, Medioni G (2011) Context tracker: exploring supporters and distracters in unconstrained environments. In: Conference on computer vision and pattern recognition

    Google Scholar 

  11. Doucet A, De Freitas N, Gordon N (eds) (2001) Sequential Monte Carlo methods in practice. Springer, New York

    MATH  Google Scholar 

  12. Fleuret F, Berclaz J, Lengagne R, Fua P (2008) Multicamera people tracking with a probabilistic occupancy map. IEEE Trans PAMI 30(2):267–282

    Article  Google Scholar 

  13. Gay-Bellile V, Bartoli A, Sayd P (2010) Direct estimation of nonrigid registrations with image-based self-occlusion reasoning. IEEE Trans PAMI 32(1):87–104

    Article  Google Scholar 

  14. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. In: Proceedings of British machine vision conference, pp 1–10

    Google Scholar 

  15. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for Robust tracking. In: Proceedings of European conference on computer vision, pp 234–247

    Google Scholar 

  16. Han B, Davis L (2005) On-line density-based appearance modeling for object tracking. In: ICCV

    Google Scholar 

  17. Jepson A, Fleet D, El-Maraghi T (2003) Robust on-line appearance models for visual tracking. IEEE Trans Pattern Anal Mach Intell 25(10):1296–1311

    Article  Google Scholar 

  18. Jiang N, Liu W, Wu Y (2011) Adaptive and discriminative metric differential tracking. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1161–1168

    Google Scholar 

  19. Kaneko T, Hori O (2003) Feature selection for reliable tracking using template matching. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 796–802

    Google Scholar 

  20. Kwak S, Nam W, Han B, Han JH (2011) Learning occlusion with likelihoods for visual tracking. In: ICCV

    Google Scholar 

  21. Kwon J, Lee KM (2010) Visual tracking decomposition. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1269–1276

    Google Scholar 

  22. Leistner C, Godec M, Saffari A, Bischof H (2010) Online multi-view forests for tracking. In: DAGM, pp 493–502

    Google Scholar 

  23. Li H, Shen C, Shi Q (2011) Real-time visual tracking with compressed sensing. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1305–1312

    Google Scholar 

  24. Lin Z, Ganesh A, Wright J, Wu L, Chen M, Ma Y (2009) Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. In: Technical Report UILU-ENG-09-2214, UIUC

    Google Scholar 

  25. Liu R, Cheng J, Lu H (2009) A Robust boosting tracker with minimum error bound in a co-training framework. In: Proceedings of the IEEE international conference on computer vision, pp 1459–1466

    Google Scholar 

  26. Liu B, Yang L, Huang J, Meer P, Gong L, Kulikowski C (2010) Robust and fast collaborative tracking with two stage sparse optimization. In: Proceedings of European conference on computer vision, pp 1–14

    Google Scholar 

  27. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision (DARPA). In: DARPA image understanding workshop, pp 121–130

    Google Scholar 

  28. Matthews I, Ishikawa T, Baker S (2004) The template update problem. IEEE Trans Pattern Anal Mach Intell 26:810–815

    Article  Google Scholar 

  29. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  30. Mei X, Ling H, Wu Y, Blasch E, Bai L (2011) Minimum error bounded efficient \(l_1\) tracker with occlusion detection. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1257–1264

    Google Scholar 

  31. Mittal A, Davis LS (2003) M2tracker: a multi-view approach to segmenting and tracking people in a cluttered scene. Int J Comput Vis 51(3):189–203

    Article  Google Scholar 

  32. Moeslund TB, Hilton A, Kruger V, Sigal L (2011) Visual analysis of humans

    Google Scholar 

  33. Peng Y, Ganesh A, Wright J, Xu W, Ma Y (2011) RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans Pattern Anal Mach Intell 34(11):2233–2246

    Article  Google Scholar 

  34. Ross D, Lim J, Yang M (2004) Adaptive probabilistic visual tracking with incremental subspace update. In: European conference on computer vision

    Google Scholar 

  35. Ross D, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for Robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  36. Salti S, Cavallaro A, Stefano LD (2012) Adaptive appearance modeling for video tracking: survey and evaluation. IEEE Trans Image Process 21(10):4334–4348

    Article  MathSciNet  Google Scholar 

  37. Wu Y, Lim J, M-H Yang (2013) Online object tracking: a benchmark. In: Proceedings of IEEE conference on computer vision and pattern recognition

    Google Scholar 

  38. Yang M, Wu Y, Hua G (2009) Context-aware visual tracking. IEEE Trans Pattern Anal Mach Intell 31(7):1195–1209

    Article  Google Scholar 

  39. Yang M, Yuan J, Wu Y (2007) Spatial selection for attentional visual tracking. In: Conference on computer vision and pattern recognition

    Google Scholar 

  40. Yang M, Wu Y, Hua G (2009) Context-aware visual tracking. PAMI 31(1):1195–1209

    Google Scholar 

  41. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13+

    Google Scholar 

  42. Yin Z, Collins R (2008) Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1–8

    Google Scholar 

  43. Yu Q, Dinh TB, Medioni G (2008) Online tracking and reacquistion using co-trained generative and discriminative trackers. In: Proceedings of European conference on computer vision, pp 78–691 (2008)

    Google Scholar 

  44. Zhang T, Lu H, Li SZ (2009) Learning semantic scene models by object classification and trajectory clustering. In: CVPR

    Google Scholar 

  45. Zhang K, Zhang L, M-H Yang (2012) Real-time compressive tracking. In: Proceedings of European conference on computer vision

    Google Scholar 

  46. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Low-rank sparse learning for robust visual tracking. In: European conference on computer vision

    Google Scholar 

  47. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: Proceedings of IEEE conference on computer vision and pattern recognition

    Google Scholar 

  48. Zhang T, Liu J, Liu S, Xu C, Lu H (2011) Boosted exemplar learning for action recognition and annotation. IEEE Trans Circuits Syst Video Technol 21(7):853–866

    Article  Google Scholar 

  49. Zhang T, Ghanem B, Liu S, Ahuja N (2013) Robust visual tracking via structured multi-task sparse learning. Int J Comput Vis 101(2):367–383

    Article  MathSciNet  Google Scholar 

  50. Zhang T, Liu S, Xu C, Lu H (2013) Mining semantic context information for intelligent video surveillance of traffic scenes. IEEE Trans Ind Inform 9(1):149–160

    Article  MathSciNet  Google Scholar 

  51. Zhong W, Lu H, M-H Y (2012) Robust object tracking via sparsity-based collaborative model. In: Proceedings of IEEE conference on computer vision and pattern recognition

    Google Scholar 

Download references

Acknowledgments

This study is supported by the research grant for the Human Sixth Sense Programme at the Advanced Digital Sciences Center from Singapore’s Agency for Science, Technology, and Research (A\(^*\)STAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, T., Ghanem, B., Xu, C., Ahuja, N. (2014). Occlusion Detection via Structured Sparse Learning for Robust Object Tracking. In: Moeslund, T., Thomas, G., Hilton, A. (eds) Computer Vision in Sports. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-09396-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09396-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09395-6

  • Online ISBN: 978-3-319-09396-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics