Skip to main content

Lyapunov-Based Stability Analysis

  • Chapter
Introduction to Time-Delay Systems

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

Abstract

This chapter presents generalizations of the direct Lyapunov method to TDSs. In the first section, for general TDSs, the stability notions are defined, and Lyapunov–Krasovskii and Lyapunov–Razumikhin stability theorems are stated. The second section gives a short introduction to linear matrix inequalities. Sections 3.3–3.7 and 3.10 are devoted to delay-independent and delay-dependent stability conditions for linear TDSs. Sufficient conditions are derived in terms of LMIs. Some of the presented ideas may be useful in the nonlinear case. Section 3.9 discusses Lyapunov-based necessary stability conditions for LTI RDEs.

The original version of this chapter was revised. An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-09393-2_8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbalat I (1959) Systems d’equations differentielles d’oscillations nonlinearies. Rev Roum Math Pures Appl 4:267–270

    MATH  Google Scholar 

  2. Borne P, Dambrine M, Perruquetti W, Richard J (2003) Vector lyapunov functions nonlinear, time-varying, ordinary and functional differential equations. In: Martynyuk AA (ed) Advances in stability theory at the end of the 20th century. Taylor & Francis, London

    Google Scholar 

  3. Boyd S, Ghaoui LE, Feron E, Balakrishnan V (1994) Linear matrix inequality in systems and control theory, vol. 15. SIAM, Studies in applied mathematics

    Book  MATH  Google Scholar 

  4. Campbell S (1980) Singular linear systems of differential equations with delays. Appl Anal 2:129–136

    Article  MathSciNet  MATH  Google Scholar 

  5. Campbell S (1991) 2-d (differential-delay) implicit systems. In: Proceedings of IMACS World congress on scientific computation, Dublin, pp 1828–1829

    Google Scholar 

  6. Cao Y, Sun Y, Cheng C (1998) Delay dependent robust stabilization of uncertain systems with multiple state delays. IEEE Trans Automat Control 43(11):1608–1612

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen WH, Zheng WX (2007) Delay-dependent robust stabilization for uncertain neutral systems with distributed delays. Automatica 43:95–104

    Article  MathSciNet  MATH  Google Scholar 

  8. Coutinho D, de Souza C (2008) Delay-dependent robust stability and l2-gain analysis of a class of nonlinear time-delay systems. Automatica 44(8):2006–2018

    Article  MathSciNet  MATH  Google Scholar 

  9. Crocco L (1951) Aspects of combustion stability in liquid propellant rocket motors, part I: fundamentals - low frequency instability with monopropellants. J Am Rocket Soc 21:163–178

    Article  Google Scholar 

  10. Dai L (1989) Singular control systems. Springer, Berlin

    Book  MATH  Google Scholar 

  11. Efimov D, Perruquetti W, Richard JP (2014) Development of homogeneity concept for time-delay systems. SIAM J Control Optim 52(3):1547–1566

    Article  MathSciNet  MATH  Google Scholar 

  12. El’sgol’tz L, Norkin S (1973) Introduction to the theory and applications of differential equations with deviating arguments. Mathematics in science and engineering. Academic, New York

    Google Scholar 

  13. Fiagbedzi Y, Pearson A (1987) A multistage reduction technique for feedback stabilizing distributed time-lag systems. Automatica 23:311–326

    Article  MathSciNet  MATH  Google Scholar 

  14. Fridman E (2001) New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Syst Control Lett 43:309–319

    Article  MathSciNet  MATH  Google Scholar 

  15. Fridman E (2002) Effects of small delays on stability of singularly perturbed systems. Automatica 38(5):897–902

    Article  MathSciNet  MATH  Google Scholar 

  16. Fridman E (2002) Stability of linear descriptor systems with delay: a Lyapunov-based approach. J Math Anal Appl 273:24–44

    Article  MathSciNet  MATH  Google Scholar 

  17. Fridman E (2006) Descriptor discretized Lyapunov functional method: analysis and design. IEEE Trans Automat Control 51:890–896

    Article  MathSciNet  Google Scholar 

  18. Fridman E (2006) A new Lyapunov technique for robust control of systems with uncertain non-small delays. IMA J Math Control Inf 23:165–179

    Article  MathSciNet  MATH  Google Scholar 

  19. Fridman E (2006) Stability of systems with uncertain delays: a new “complete” Lyapunov-Krasovskii functional. IEEE Trans Automat Control 51:885–890

    Article  MathSciNet  Google Scholar 

  20. Fridman E, Niculescu SI (2008) On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. Int J Robust Nonlinear Control 18(3):364–374

    Article  MathSciNet  MATH  Google Scholar 

  21. Fridman E, Orlov Y (2009) Exponential stability of linear distributed parameter systems with time-varying delays. Automatica 45(2):194–201

    Article  MathSciNet  MATH  Google Scholar 

  22. Fridman E, Shaked U (2002) A descriptor system approach to H control of linear time-delay systems. IEEE Trans Automat control 47(2):253–270

    Article  MathSciNet  Google Scholar 

  23. Fridman E, Shaked U (2002) An improved stabilization method for linear time-delay systems. IEEE Trans Automat Control 47(11):1931–1937

    Article  MathSciNet  Google Scholar 

  24. Fridman E, Shaked U (2003) Delay dependent stability and H control: constant and time-varying delays. Int J Control 76(1):48–60

    Article  MathSciNet  MATH  Google Scholar 

  25. Fridman E, Tsodik G (2009) H control of distributed and discrete delay systems via discretized Lyapunov functional. Eur J Control 15(1):84–96

    Article  MathSciNet  MATH  Google Scholar 

  26. Fridman E, Dambrine M, Yeganefar N (2008) On input-to-state stability of systems with time-delay: a matrix inequalities approach. Automatica 44(9):2364–2369

    Article  MathSciNet  MATH  Google Scholar 

  27. Fridman E, Shaked U, Liu K (2009) New conditions for delay-derivative-dependent stability. Automatica 45(11):2723–2727

    Article  MathSciNet  MATH  Google Scholar 

  28. Gouaisbaut F, Peaucelle D (2006) Delay-dependent stability of time delay systems. In: Proceedings of ROCOND06, Toulouse

    Google Scholar 

  29. Gouaisbaut F, Dambrine M, Richard JP (2002) Robust control of delay systems: a sliding mode control design via LMI. Syst Control Lett 46:219–230

    Article  MathSciNet  MATH  Google Scholar 

  30. Gu K (1997) Discretized LMI set in the stability problem of linear time-delay systems. Int J Control 68:923–934

    Article  MathSciNet  MATH  Google Scholar 

  31. Gu K (2010) Stability problem of systems with multiple delay channels. Automatica 46:743–751

    Article  MathSciNet  MATH  Google Scholar 

  32. Gu K, Niculescu SI (2001) Further remarks on additional dynamics in various model transformations of linear delay systems. IEEE Trans Automat Control 46(3):497–500

    Article  MathSciNet  MATH  Google Scholar 

  33. Gu K, Kharitonov V, Chen J (2003) Stability of time-delay systems. Birkhauser, Boston

    Book  MATH  Google Scholar 

  34. Halanay A (1966) Differential equation: stability, oscillations, time lags. Academic, New York

    MATH  Google Scholar 

  35. Halanay A, Rasvan V (1997) Stability radii for some propagation models. IMA J Math Control Inf 14:95–107

    Article  MathSciNet  MATH  Google Scholar 

  36. Hale J (1971) Critical cases for neutral functional differential equations. J Differ Equ 10(1):59–82

    Article  MathSciNet  MATH  Google Scholar 

  37. Hale J, Amores PM (1977) Stability in neutral equations. J Nonlinear Anal Theory Methods Appl 1:161–172

    Article  MathSciNet  MATH  Google Scholar 

  38. Hale JK, Lunel SMV (1993) Introduction to functional differential equations. Springer, New York

    Book  MATH  Google Scholar 

  39. Hardy GH, Littlewood JE, Pólya G (1988) Inequalities. Mathematical Library, Cambridge

    MATH  Google Scholar 

  40. He Y, Wu M, She J, Liu G (2004) Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Syst Control Lett 51:57–65

    Article  MathSciNet  MATH  Google Scholar 

  41. He Y, Wang QG, Lin C, Wu M (2007) Delay-range-dependent stability for systems with time-varying delay. Automatica 43:371–376

    Article  MathSciNet  MATH  Google Scholar 

  42. He Y, Wang QG, Xie L, Lin C (2007) Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Trans Automat Control 52:293–299

    Article  MathSciNet  Google Scholar 

  43. Huang W (1989) Generalization of lyapunov’s theorem in a linear delay system. J Math Anal Appl 142:83–94

    Article  MathSciNet  MATH  Google Scholar 

  44. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  45. Kharitonov V (2013) Time-delay systems: Lyapunov functionals and matrices. Birkhauser, Boston

    Book  MATH  Google Scholar 

  46. Kharitonov V, Melchor-Aguilar D (2000) On delay-dependent stability conditions. Syst Control Lett 40:71–76

    Article  MathSciNet  MATH  Google Scholar 

  47. Kharitonov V, Niculescu S (2003) On the stability of linear systems with uncertain delay. IEEE Trans Automat Control 48:127–132

    Article  MathSciNet  Google Scholar 

  48. Kharitonov V, Zhabko A (2003) Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica 39:15–20

    Article  MathSciNet  MATH  Google Scholar 

  49. Kim JH (2001) Delay and its time-derivative dependent robust stability of time-delayed linear systems with uncertainty. IEEE Trans Automat Control 46:789–792

    Article  MathSciNet  MATH  Google Scholar 

  50. Kolmanovskii V, Myshkis A (1999) Applied theory of functional differential equations. Kluwer, Dordrecht

    MATH  Google Scholar 

  51. Kolmanovskii V, Richard JP (1999) Stability of some linear systems with delays. IEEE Trans Automat Control 44:984–989

    Article  MathSciNet  MATH  Google Scholar 

  52. Krasovskii N (1959, 1963) Stability of motion. Stanford University Press, Redwood City (in Russian)

    Google Scholar 

  53. Krasovskii N (1962) On the analytic construction of an optimal control in a system with time lags. J Appl Math Mech 26(1):50–67

    Article  MathSciNet  Google Scholar 

  54. Li X, de Souza C (1997) Criteria for robust stability and stabilization of uncertain linear systems with state delay. Automatica 33:1657–1662

    Article  MathSciNet  Google Scholar 

  55. Liu K, Fridman E (2012) Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica 48:102–108

    Article  MathSciNet  MATH  Google Scholar 

  56. Liu K, Suplin V, Fridman E (2010) Stability of linear systems with a general sawtooth delay, special issue on time-delay systems. IMA J Math Control Inf 27(4):419–436

    Article  MATH  Google Scholar 

  57. Logemann H (1998) Destabilizing effects of small time delays on feedback-controlled descriptor systems. Linear Algebra Appl 272:131–153

    Article  MathSciNet  MATH  Google Scholar 

  58. Malek-Zavareri M, Jamshidi M (1987) Time-delay systems. Analysis, optimization and applications. Systems and control series, vol 9. North-Holland, Amsterdam

    Google Scholar 

  59. Mao X (1997) Razumikhin-type theorems on exponential stability of neutral stochastic differential equations. SIAM J Math Anal 28(2):389–401

    Article  MathSciNet  MATH  Google Scholar 

  60. Mondie S (2012) Assessing the exact stability region of the single-delay scalar equation via its Lyapunov function. IMA J Math Control Inf 29:459–470

    Article  MathSciNet  MATH  Google Scholar 

  61. Niculescu SI (2001) Delay effects on stability: a robust control approach. Lecture notes in control and information sciences, vol 269. Springer, London

    Google Scholar 

  62. Niculescu SI, Rasvan V (2000) Delay-independent stability in lossless propagation models with applications. In: Proceedings of MTNS 2000, MTNS, Perpignan

    Google Scholar 

  63. Papachristodoulou A (2005) Robust stabilization of nonlinear time delay systems using convex optimization. In: 44th IEEE conference on decision and control, Sevilia, pp 5788–5793

    Google Scholar 

  64. Park PG (1999) A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans Automat Control 44:876–877

    Article  MathSciNet  MATH  Google Scholar 

  65. Park PG, Ko J, Jeong C (2011) Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47:235–238

    Article  MathSciNet  MATH  Google Scholar 

  66. Quet PF, Ataşlar B, Iftar A, Ozbay H, Kalyanaraman S, Kang T (2002) Rate-based flow controllers for communication networks in the presence of uncertain time-varying multiple time-delays. Automatica 38(6):917–928

    Article  MathSciNet  MATH  Google Scholar 

  67. Rasvan V (1975) Absolute stability of time lag control systems (in Romanian). Academiei, Bucharest

    MATH  Google Scholar 

  68. Razumikhin B (1956) On the stability of systems with a delay. Prikl Math Mech 20:500–512 (Russian)

    MathSciNet  Google Scholar 

  69. Repin YM (1965) Quadratic Lyapunov functionals for systems with delay. Prikl Math Mech 29:564–566 (in Russian)

    Google Scholar 

  70. Seuret A, Gouaisbaut F (2012) On the use of the Wirtinger’s inequalities for time-delay systems. In: Proceedings of the 10th IFAC workshop on time delay systems (IFAC TDS’12), Boston

    Google Scholar 

  71. Seuret A, Gouaisbaut F (2013) Wirtinger-based integral inequality: application to time-delay systems. Automatica 49(9):2860–2866

    Article  MathSciNet  MATH  Google Scholar 

  72. Seuret A, Gouaisbaut F, Fridman E (2013) Stability of systems with fast-varying delay using improved wirtinger’s inequality. In: Proceedings of the conference on decision and control

    Google Scholar 

  73. Sun J, Liu GP, Chen J (2009) Delay-dependent stability and stabilization of neutral time-delay systems. Int J Robust Nonlinear Control 19:1364–1375

    Article  MathSciNet  MATH  Google Scholar 

  74. Suplin V, Fridman E, Shaked U (2004) A projection approach to H control of time-delay systems. In: 43th IEEE conference on decision and control, Bahamas

    Google Scholar 

  75. Suplin V, Fridman E, Shaked U (2009) H sampled-data control of systems with time-delays. Int J Control 82(2):298–309

    Article  MathSciNet  MATH  Google Scholar 

  76. Takaba K, Morihira N, Katayama T (1995) A generalized Lyapunov theorem for descriptor system. Syst Control Lett 24:49–51

    Article  MathSciNet  MATH  Google Scholar 

  77. Verriest E (2002) Stability of systems with state-dependent and random delays. IMA J Math Control Inf 19:103–114

    Article  MathSciNet  MATH  Google Scholar 

  78. Wu M, He Y, She JH (2010) Stability analysis and robust control of time-delay systems. Science Press/Springer, Beijing/Berlin

    Book  MATH  Google Scholar 

  79. Xie L (1996) Output feedback h control of systems with parameter uncertainty. Int J Control 63(4):741–750

    Article  MathSciNet  MATH  Google Scholar 

  80. Xu H, Mizukami K (1997) Infinite-horizon differential games of singularly perturbed systems: a unified approach. Automatica 33:273–276

    Article  MathSciNet  MATH  Google Scholar 

  81. Xu S, Dooren PV, Stefan R, Lam J (2002) Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Trans Automat Control 47:1122–1128

    Article  MathSciNet  Google Scholar 

  82. Yakubovich V (1962) The solution of certain matrix inequalities encountered in automatic control theory. Sov Math Dokl (in Russian) 3:620–623

    MATH  Google Scholar 

  83. Yakubovich V (1971) S-procedure in nonlinear control theory. Vestn Leningr Univ 1:62–77

    MathSciNet  MATH  Google Scholar 

  84. Yue D, Tian E, Zhang Y (2009) A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay. Int J Robust Nonlinear Control 19:1493–1518

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fridman, E. (2014). Lyapunov-Based Stability Analysis. In: Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-09393-2_3

Download citation

Publish with us

Policies and ethics