Skip to main content

Data-Driven Stream Mining Systems for Computer Vision

  • Chapter
  • First Online:
Advances in Embedded Computer Vision

Abstract

In this chapter, we discuss the state of the art and future challenges in adaptive stream mining systems for computer vision. Adaptive stream mining in this context involves the extraction of knowledge from image and video streams in real-time, and from sources that are possibly distributed and heterogeneous. With advances in sensor and digital processing technologies, we are able to deploy networks involving large numbers of cameras that acquire increasing volumes of image data for diverse applications in monitoring and surveillance. However, to exploit the potential of such extensive networks for image acquisition, important challenges must be addressed in efficient communication and analysis of such data under constraints on power consumption, communication bandwidth, and end-to-end latency. We discuss these challenges in this chapter, and we also discuss important directions for research in addressing such challenges using dynamic, data-driven methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amini L, Andrade H, Eskesen F, King R, Park Y, Selo P, Venkatramani C (2005) The stream processing core. Technical Report RSC 23798

    Google Scholar 

  2. Atan O, Andreopoulos Y, Tekin C (2014) Bandit framework for systematic learning in wireless video-based face recognition. In: Proceedings of the international conference on acoustics, speech, and signal processing

    Google Scholar 

  3. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Mach Learn 47(2–3):235–256

    Article  MATH  Google Scholar 

  4. Babcock B, Babu S, Datar M, Motwani R (2003) Chain: operator scheduling for memory minimization in data stream systems. In: ACM SIGMOD

    Google Scholar 

  5. Babcock B, Datar M, Motwani R (2003) Cost-efficient mining techniques for data streams. In: Proceedings of the workshop on management and processing of data streams

    Google Scholar 

  6. Balazinska M, Balakrishnan H, Madden S, Stonebraker M (2005) Fault tolerance in the borealis distributed stream processing system. In: Proceedings of the international conference on management of data

    Google Scholar 

  7. Becker BC, Ortiz EG (2008) Evaluation of face recognition techniques for application to facebook. In: Proceedings of the IEEE international conference on automatic face and gesture recognition, pp 1–6

    Google Scholar 

  8. Bhattacharyya SS, Deprettere E, Leupers R, Takala J (eds) (2013) Handbook of signal processing systems, 2nd edn. Springer, New York. http://dx.doi.org/10.1007/978-1-4614-6859-2. ISBN: 978-1-4614-6858-5 (Print); 978-1-4614-6859-2 (Online)

  9. Bilsen G, Engels M, Lauwereins R, Peperstraete JA (1996) Cyclo-static dataflow. IEEE Trans Signal Process 44(2):397–408

    Article  Google Scholar 

  10. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Knowl Discov Data Min 2(2):121–167

    Article  Google Scholar 

  11. Cherniack M, Balakrishnan H, Carney D, Cetintemel U, Xing Y, Zdonik S (2003) Scalable distributed stream processing. In: CIDR

    Google Scholar 

  12. Chi Y, Yu PS, Wang H, Muntz RR (2005) Loadstar: a load shedding scheme for classifying data streams. In: Proceedings of the SIAM conference on data mining

    Google Scholar 

  13. Darema F (2005) Grid computing and beyond: The context of dynamic data driven applications systems. Proc IEEE 93(2):692–697

    Article  Google Scholar 

  14. Ducasse R, Turaga D, van der Schaar M (2010) Adaptive topologic optimization for large-scale stream mining. IEEE J Sel Top Sign Proces 4(3):620–636

    Article  Google Scholar 

  15. Eide V, Eliassen F, Granmo O, Lysne O (2003) Supporting timeliness and accuracy in distributed real-time content-based video analysis. In: Proceedings of the ACM international conference on multimedia

    Google Scholar 

  16. Foo B, van der Schaar M (2010) A distributed approach for optimizing cascaded classifier topologies in real-time stream mining systems. IEEE Trans Image Process 19(11):3035–3048

    Article  MathSciNet  Google Scholar 

  17. Foo B, Turaga D, Verscheure O, Amini L, van der Schaar M (2011) Configuring trees of classifiers in distributed multimedia stream mining systems. IEEE Trans Circuits Syst Video Technol 21(3):245–258

    Article  Google Scholar 

  18. Fu F, Turaga D, Verscheure O, van der Schaar M, Amini L (2007) Configuring competing classifier chains in distributed stream mining systems. IEEE J Sel Top Sign Process 1(4):548–563

    Article  Google Scholar 

  19. Garg A, Pavlovic V (2002) Bayesian networks as ensemble of classifiers. In: Proceedings of the international conference on pattern recognition, pp 779–784

    Google Scholar 

  20. Georghiades AS, Belhumeur PN, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  21. Girod B, Chandrasekhar V, Chen DM, Cheung N, Grzeszczuk R, Reznik Y, Takacs G, Tsai SS, Vedantham R (2011) Mobile visual search. IEEE Signal Process Mag 28(4):61–76

    Article  Google Scholar 

  22. Langford J, Zhang T (2008) The epoch-greedy algorithm for multi-armed bandits with side information. In: Platt JC, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems. Curran Associates, New York, pp 817–824

    Google Scholar 

  23. Lee EA, Messerschmitt DG (1987) Synchronous dataflow. Proc IEEE 75(9):1235–1245

    Article  Google Scholar 

  24. Lienhart R, Liang L, Kuranov A (2003) A detector tree for boosted classifiers for real-time object detection and tracking. In: Proceedings of the IEEE international conference on multimedia and expo

    Google Scholar 

  25. Li A, Yang X, Kandula S, Zhang M (2010) CloudCmp: comparing public cloud providers. In: Proceedings of the ACM SIGCOMM conference on internet measurement, pp 1–14

    Google Scholar 

  26. Ntoulas A, Najork M, Manasse M, Fetterly D (2006) Detecting spam web pages through content analysis. In: Proceedings of the international conference on world wide web

    Google Scholar 

  27. Olston C, Jiang J, Widom J (2003) Adaptive filters for continuous queries over distributed data streams. In: ACM SIGMOD

    Google Scholar 

  28. Pang S (2004) SVM classification tree algorithm with application to face membership authentication. In: Proceedings of the international joint conference on neural networks

    Google Scholar 

  29. Plishker W, Sane N, Kiemb M, Anand K, Bhattacharyya SS (2008) Functional DIF for rapid prototyping. In: Proceedings of the international symposium on rapid system prototyping, Monterey, California, pp 17–23

    Google Scholar 

  30. Ren S, van der Schaar M (2013) Efficient resource provisioning and rate selection for stream mining in a community cloud. IEEE Trans Multimedia 15(4):723–734

    Article  Google Scholar 

  31. Schapire RE (2003) The boosting approach to machine learning: an overview. In: Denison DD, Hansen MH, Holmes C, Mallick B, Yu B (eds) Nonlinear estimation and classification. Springer, New York

    Google Scholar 

  32. Siewiorek D (2012) Generation smartphone. IEEE Spectr Mag 49(9):54–58

    Article  Google Scholar 

  33. Slivkins A (2011) Contextual bandits with similarity information. In: Proceedings of the conference on learning theory

    Google Scholar 

  34. Sudusinghe K, Cho I, van der Schaar M, Bhattacharyya SS (2014) Model based design environment for data-driven embedded signal processing systems. In: Proceedings of the international conference on computational science, Cairns, Australia, pp 1193–1202

    Google Scholar 

  35. Sudusinghe K, Won S, van der Schaar M, Bhattacharyya SS (2013) A novel framework for design and implementation of adaptive stream mining systems. In: Proceedings of the IEEE international conference on multimedia and expo, San Jose, California, pp 1–6. http://ieeexplore.ieee.org

  36. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press/Bradford Books, Cambridge

    Google Scholar 

  37. Tatbul N (2002) Qos-driven load shedding on data streams. In: XML-based data management and multimedia engineering

    Google Scholar 

  38. Tatbul N, Etintemel UC, Zdonik SB (2007) Staying fit: efficient load shedding techniques for distributed stream processing. In: Proceedings of the international conference on very large databases

    Google Scholar 

  39. Tatbul N, Etintemel UC, Zdonik SB, Cherniack M, Stonebraker M (2003) Load shedding in a data stream manager. In: Proceedings of the international conference on very large databases, pp 309–320

    Google Scholar 

  40. Tatbul N, Zdonik SB (2006) Dealing with overload in distributed stream processing systems. In: Proceedings of the IEEE international workshop on networking meets databases

    Google Scholar 

  41. Viglas S, Naughton J (2012) Rate-based query optimization for streaming information sources. In: Proceedings of ACM SIGMOD

    Google Scholar 

  42. Wu JRSY, Tseng B (2004) Ontology-based multi-classification learning for video concept detection. In: Proceedings of the IEEE international conference on multimedia and expo

    Google Scholar 

  43. Yang J, Zhang D, Frangi AF, Yang J (2004) Two-dimensional pca: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  44. Zhu X, Lan C, van der Schaar M (2013) Low-complexity reinforcement learning for delay-sensitive compression in networked video stream mining. In: Proceedings of the IEEE international conference on multimedia and expo

    Google Scholar 

Download references

Acknowledgments

This work is supported by the US Air Force Office of Scientific Research under the DDDAS Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuvra S. Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhattacharyya, S.S., van der Schaar, M., Atan, O., Tekin, C., Sudusinghe, K. (2014). Data-Driven Stream Mining Systems for Computer Vision. In: Kisačanin, B., Gelautz, M. (eds) Advances in Embedded Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-09387-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09387-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09386-4

  • Online ISBN: 978-3-319-09387-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics