The Effects of Transgenic Crops on Non-target Organisms

  • Chandrakanth EmaniEmail author
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 4)


A non-monitored cultivation of transgenic crops can potentially have adverse effects on animal biodiversity when the transgenic plants or their expressed products negatively impact the organisms that are not intended to be the targets that need to be controlled. Agro-ecosystems house a diverse array of species above and below the cultivated ground that can come in contact with the cultivated plants and their metabolites. When a transgenic crop intended for pest control is planted in the field, the resulting effect on the agro-ecosystem cannot exclude the rest of the species in the habitat non-intended to be harmed by the transgenics, and these are defined as the non-target species. The present review summarizes the possible effects of transgenic plants on non-target species in agro-ecosystems with a focus on possible strategies to minimize the unintended effects of transgenic crop cultivation on animal biodiversity, while complementing the efforts of integrated pest management.


Transgenic crops Non-target species Bt maize Monarch butterfly Pollinator 


  1. Anderson PL, Hellmich RL, Sumerford DV, Lewis LC (2004) Effects of Cry1Abexpressing corn anthers on monarch butterfly larvae. Environ Entomol 33:1109–1115CrossRefGoogle Scholar
  2. Andow DA, Lövei GL, Arpaia S (2006) Ecological risk assessment for Bt crops. Nat Biotech 24:749–751CrossRefGoogle Scholar
  3. Arpaia S (2012) Genetically modified plants and “non-target” organisms: analyzing the functioning of agro-ecosystem. Accessed 15 May 2014
  4. Birch ANE, Wheatley RE (2005) GM pest-resistant crops; assessing environmental impacts on non-target organisms. Issues Environ Sci Tech 21:31–57CrossRefGoogle Scholar
  5. Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244CrossRefGoogle Scholar
  6. Castaldini M, Turrini A, Sbrana C, Benedetti A et al (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental ­microcosms. Appl Environ Microbiol 71:6719–6729PubMedCrossRefPubMedCentralGoogle Scholar
  7. Clark BW, Prihoda KR, Coats JR (2006) Subacute effects of transgenic Cry1Ab Bacillus thuringiensis corn litter on the isopods Trachelipus rathkii and Armadillidium nasatum. Environ ­Toxicol Chem 25:2653–2661PubMedCrossRefGoogle Scholar
  8. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499PubMedCrossRefPubMedCentralGoogle Scholar
  9. Debach P, Rosen D (1991) Biological control by natural enemies, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  10. De la Poza M, Pons X, López C et al (2005) Impact of farm-scale Bt-maize on abundance of ­predatory arthropods in Spain. Crop Prot 24:677–684CrossRefGoogle Scholar
  11. Dhillon MK, Sharma HC (2009) Effects of Bacullus thuringiensis—endotoxins Cry1Ab and ­Cry1Ac on the coccinellid beetle, Cheilomenes sexmaculatus (Coleoptera, Coccinellidae) under direct and indirect exposure conditions. Biocontrol Sci Tech 19:407–420CrossRefGoogle Scholar
  12. Dively GP, Rose R, Sears MK, Hellmich RL et al (2004) Effects on monarch butterfly larvae (Lepidoptera: Danaidae) after continuous exposure to Cry1Ab-expressing corn during anthesis. Environ Entomol 33:1116–1125CrossRefGoogle Scholar
  13. Duan JJ, Marvier M, Huesing J, Dively G, Huang ZY (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS One 3(1):e1415PubMedCrossRefPubMedCentralGoogle Scholar
  14. Escher N, Kach B, Nentwig W (2000) Decomposition of transgenic Bacillus thuringiensis maize by microorganisms and woodlice Porcello scaber (Crustacea: Isopoda). Basic Appl Entomol 1:161–169CrossRefGoogle Scholar
  15. Filion M (2008) Do transgenic plants affect rhizobacteria populations? Microbial Biotechnol 1:463–475CrossRefGoogle Scholar
  16. Garcia-Robles I, Sanchez J, Gruppe A, Martınez-Ramırez AC et al (2001) Mode of action of Bacillus thuringiensis PS86Q3 strain in hymenopteran forest pests. Insect Biochem Mol Biol 31:849–856PubMedCrossRefGoogle Scholar
  17. Green JM, Owen MDK (2011) Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management. J Agric Food Chem 51:5819–5829CrossRefGoogle Scholar
  18. Griffiths BS, Caul S, Thompson J, Birch ANE et al (2007a) Microbial and microfaunal community structure in cropping systems with genetically modified plants. Pedobiologia 51:195–206CrossRefGoogle Scholar
  19. Griffiths BS, Heckmann LH, Caul S, Thompson J et al (2007b) Varietal effects of eight paired lines of transgenic Bt-maize and nearisogenic non-Bt-maize on soil microbial and nematode community structure. Plant Biotechnol J 5:60–68CrossRefGoogle Scholar
  20. Gupta VVSR, Yeates GW (1997) Soil microfauna as bioindicators of soil health. In: Pankurst CE (ed) Biological indicators of soil health. CAB International, New York, pp 201–233Google Scholar
  21. Haughton AJ, Champion GT, Hawes C, Heard MS et al (2003) Invertebrate responses to the ­management of genetically modified herbicide-tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. Philos Trans R Soc Lond B 358:1863–1877CrossRefGoogle Scholar
  22. Hodgson J (1999) Monarch Bt-corn paper questioned. Nat Biotech 17:627CrossRefGoogle Scholar
  23. Höss S, Arndt M, Baumgarte S, Tebbe CC et al (2008) Effects of transgenic corn and Cry1Ab toxin on the nematode, Caenorhabditis elegans. Ecotoxicol Environ Saf 70:334–340PubMedCrossRefGoogle Scholar
  24. Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40:559–586CrossRefGoogle Scholar
  25. James C (2009) Global status of commercialized biotech/GM crops: 2009. ISAAA Brief No. 39. IthacaGoogle Scholar
  26. Jesse LCH, Obrycki JJ (2003) Occurrence of Danaus plexippus L. (Lepidoptera: Danaidae) on milkweeds (Asclepias syriaca) in transgenic Bt corn agroecosystems. Agric Ecosyst Environ 97:225–233CrossRefGoogle Scholar
  27. Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214PubMedCrossRefGoogle Scholar
  28. Lövei GL, Arpaia S (2005) The impact of transgenic plants on natural enemies a critical review of laboratory studies. Entomol Exp Appl 114:1–14CrossRefGoogle Scholar
  29. Lövei GL, Andow DA, Arpaia S (2009) Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Environ Entomol 38:293–306PubMedCrossRefGoogle Scholar
  30. Lynch J (1994) The rhizosphere—form and function. Appl Soil Ecol 1:193–198CrossRefGoogle Scholar
  31. Malone LA, Burgess EPJ (2009) Impact of genetically modified crops on pollinators. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops. CAB International, Wallingford, pp 199–222CrossRefGoogle Scholar
  32. Malone LA, Burgess EPJ, Stefanovic D, Gatehouse HS (2000) Effects of four proteinase inhibitors on the survival of worker bumblebees Bombus terrestris L. Apidologie 31:25–38CrossRefGoogle Scholar
  33. Manachini B, Lozzia GC (2002) First investigations into the effects of Bt corn crop on Nematofauna. Boll Zool Agraria e Bachicoltura II 34:85–96Google Scholar
  34. Marshall A (2009) 13.3 million farmers cultivate GM crops. Nat Biotechnol 27(3):221PubMedCrossRefGoogle Scholar
  35. Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on non-target invertebrates. Sci 316:1475–1477CrossRefGoogle Scholar
  36. Moore JC, Walter DE, Hunt HW (1988) Arthropod regulation of micro and mesobiota in below-ground detrital food webs. Annu Rev Entomol 33:419–439CrossRefGoogle Scholar
  37. Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev: Perspect Agric Vet Sci Nutr Nat Res 4:1–23CrossRefGoogle Scholar
  38. Oberhauser KS, Prysby M, Mattila HR, Stanley-Horn DE et al (2001) Temporal and spatial overlap between monarch larvae and corn pollen. Proc Natl Acad Sci U S A 98:11913–11918PubMedCrossRefPubMedCentralGoogle Scholar
  39. Obrist LB, Dutton A, Romeis J, Bigler F (2006) Biological activity of Cry1Ab toxin expressed by Bt-maize following ingestion by herbivorous arthropods and exposure of the predator Chrysoperla carnea. BioControl 51:31–48CrossRefGoogle Scholar
  40. O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on non-target organisms. Annu Rev Entomol 50:271–292PubMedCrossRefGoogle Scholar
  41. Pleasants JM, Hellmich RL, Dively GP, Sears MK et al (2001) Corn pollen deposition on ­milkweeds in or near corn field. Proc Natl Acad Sci U S A 98:11919–11924PubMedCrossRefPubMedCentralGoogle Scholar
  42. Prasifka PL, Hellmich RL, Prasifka JR, Lewis LC (2007) Effects of Cry1Ab expressing corn ­anthers on the movement of monarch butterfly larvae. Environ Entomol 36:228–233PubMedCrossRefGoogle Scholar
  43. Ramirez-Romero R, Chaufaux J, Pham-Delègue MH (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36:601–611CrossRefGoogle Scholar
  44. Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71PubMedCrossRefGoogle Scholar
  45. Rose R, Dively GP, Pettis J (2007) Effects of Bt corn pollen on honey bees: emphasis on protocol development. Apidologie 38:368–377CrossRefGoogle Scholar
  46. Saxena D, Stotzky G (2001) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem 33:1225–1230CrossRefGoogle Scholar
  47. Schrader S, Münchenberg T, Baumgarte S, Tebbe CC (2008) Earthworms of different functional groups affect the fate of the Bt-toxin Cry1Ab from transgenic maize in soil. Eur J Soil Biol 44:283–289CrossRefGoogle Scholar
  48. Sims SR, Martin JW (1997) Effect of Bacillus thuringiensis insecticidal proteins Cry1A(b), Cry1A(c), CryIIA, and CryIIIA on Folsomia candida and Xenylla grisea (Insecta: ­Collembola). Pedobiologia 41:412–416Google Scholar
  49. Weber M, Nentwig W (2006) Impact of Bt corn on the diplopod Allajulus latestriatus. Pedobiologia 50:357–368CrossRefGoogle Scholar
  50. Widmer F (2007) Assessing effects of transgenic crops on soil microbial communities. Adv ­Biochem Eng Biotechnol 107:207–234PubMedGoogle Scholar
  51. Wolfenbarger LL, Naranjo SE, Lundgren JG, Bitzer RJ, Watrud LS (2008) Bt crop effects on ­functional guilds of non-target arthropods: a meta-analysis. PLoS ONE 3(5):e2118PubMedCrossRefPubMedCentralGoogle Scholar
  52. Xue K, Luo HF, Qi HY, Zhang HX (2005) Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA. J Environ Sci (China) 17:130–134Google Scholar
  53. Zwahlen C, Hilbeck A, Howald R, Nentwig W (2003) Effects of transgenic Bt corn litter on earthworm Lumbricus terrestris. Mol Ecol 12:1077–1086PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of BiologyWestern Kentucky University-OwensboroOwensboroUSA

Personalised recommendations