Conservation of Global Wheat Biodiversity: Factors, Concerns and Approaches

  • M. Asif
  • A. H. Hirani
  • S. K. Basu
  • E. Noguera-Savelli
  • W. Cetzal-IxEmail author
  • P. Zandi
  • R. Sengupta
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 4)


Wheat is an important food crop in the world. It is also one of the top three global food crops produced after rice and maize that constitutes an immensely significant role with respect to global food security. Due to finite land resources that can be dedicated to agriculture global wheat production has been consistently dependent on genetic improvement of wheat germplasm across the world. Traditional plant breeding has been an important tool in increasing global food production by producing disease and stress resistant, high yielding and early maturing wheat varieties. However, it is necessary to have a stable and divergent pool of wheat genotypes grown under different environmental conditions and different land races of wheat as genetic feedstock for enhanced genetic improvements. Due to increased global human population, extensive anthropogenic pollution and damages to the vulnerable local ecosystems, existing genotypes and land races of wheat are under constant threat of becoming extinct. Hence it is absolutely necessary to conserve the global wheat biodiversity for securing the future of our food security. Recent progress and developments in technological applications including those in the realm of biotechnology have turned out into an essential tool that could be effectively and efficiently utilized for wheat biodiversity conservation. This short review is an attempt to investigate different factors and concerns jeopardizing global wheat biodiversity and pinpoints some potential approaches for its successful conservation.


Wheat Biodiversity Conservation Genetic Cultivars Genotypes Germplasm Landraces Biotechnology 



Amplified fragment length polymorphism


Chinese Academy of Agricultural Sciences


International Maize and Wheat Improvement Center


Diversity arrays technology


Food and Agriculture Organization


International Center for Agricultural Research in the Dry Areas


Institute of Crop Germplasm Resources


National Bureau of Plant Genetic Resources


National Institute of Agrobiological Sciences


National Small Grains Germplasm Research Facility


Random amplified polymorphic DNA


Restriction fragment length polymorphism


Single nucleotide polymorphism


Simple sequence repeats


  1. Ammann K (2005) Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends Biotechnol 23:388–394PubMedCrossRefGoogle Scholar
  2. Autrique E, Nachit M, Monneveux P, Tanksley SD, Sorrells ME (1996) Genetic diversity in durum wheat based on RFLPs, morphophysiological traits, and coefficient of parentage. Crop Sci 36:735–742CrossRefGoogle Scholar
  3. Bebiakin VM, Krupnov VA, Marushev AI, Bespiatova LP (1976) Genetic analysis of protein concentration in the grain of hybrids of spring wheat. Tsitol Genet 10:450–454PubMedGoogle Scholar
  4. Belokurova VB (2010) Methods of biotechnology in the system of efforts for plant biodiversity preservation. Tsitol Genet 44:58–72PubMedGoogle Scholar
  5. Benz B (2012) The conservation of cultivated plants. Nat Edu Knowl 3:4Google Scholar
  6. Bettencourt E, Konopka J (1990) Directory of crop germplasm collections. 3. Cereals: Avena, 0, millets, Oryza, Secale, Sorghum, Triticum, Zea and pseudocereals. International Board for Plant Genetic Resources, RomeGoogle Scholar
  7. Bowden WM (1959) The taxonomy and nomenclature of wheat, barley, and rye and their wild relatives. Can J Bot 37:657–684CrossRefGoogle Scholar
  8. Brook BW, Sodhi NS, Bradshaw CJ (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460PubMedCrossRefGoogle Scholar
  9. Brush SB (1995) In situ conservation of landraces in centers of crop diversity. Crop Sci 35:346–354CrossRefGoogle Scholar
  10. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67PubMedCrossRefGoogle Scholar
  11. Carvalho A, Guedes-Pinto H, Lima-Brito J (2009a) Genetic diversity among old Portuguese bread wheat cultivars and botanical varieties evaluated by ITS rDNA PCR-RFLP markers. J Genet 88:363–367CrossRefGoogle Scholar
  12. Carvalho A, Lima-Brito J, Macas B, Guedes-Pinto H (2009b) Genetic diversity and variation among botanical varieties of old Portuguese wheat cultivars revealed by ISSR assays. Biochem Genet 47:276–294CrossRefGoogle Scholar
  13. Carver BF, Johnson RC, Rayburn AL (1989) Genetic analysis of photosynthetic variation in hexaploid and tetraploid wheat and their interspecific hybrids. Photosynth Res 20:105–118PubMedGoogle Scholar
  14. Chatzav M, Peleg Z, Ozturk L, Yazici A, Fahima T, Cakmak I, Saranga Y (2010) Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot 105:1211–1220PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen TH, Kartha K, Gusta L (1985) Cryopreservation of wheat suspension culture and regenerable callus. Plant Cell Tissue Organ Cult 4:101–109CrossRefGoogle Scholar
  16. Curtis BC (2002) Wheat in the world. In: Curtis BC, Rajaram S, Macpherson HG (eds) Bread wheat improvement and production. FAO Plant Production and Protection Series, Rome, pp 1–19Google Scholar
  17. de Carvalho M, Bebeli PJ, Bettencourt E, Costa G, Dias S, Dos Santos TMM, Slaski JJ (2013) Cereal landraces genetic resources in worldwide GeneBanks. A review. Agron Sustain Dev 33:177–203CrossRefGoogle Scholar
  18. Diaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304CrossRefGoogle Scholar
  19. Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917CrossRefGoogle Scholar
  20. Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants 1. Kolos, Leningrad, p 346Google Scholar
  21. Dumortier BC (1823) Observations sur les gramineés de la flore Belgiques. Casterman, TournayCrossRefGoogle Scholar
  22. Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proc Biol Sci R Soc 276:3037–3045CrossRefGoogle Scholar
  23. Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258PubMedCrossRefGoogle Scholar
  24. Fu YB (2006) Impact of plant breeding on genetic diversity of agricultural crops: searching for molecular evidence. Plant Genet Resour 4:71–78CrossRefGoogle Scholar
  25. Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell Online 22:1046–1056CrossRefGoogle Scholar
  26. Gill BS, Appels R, Botha-Oberholster A et al (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168:1087–1096PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gökgöl M (1955) Bugdaylarin Tansif Anahtari. Ziraat Vekaleti, Neşriyet ve Haberleşme MüdürlügÌü, no 716, IstanbulGoogle Scholar
  28. Golovnina KA, Glushkov SA, Blinov AG, Mayorov VI, Adkison LR, Goncharov NP (2007) Molecular phylogeny of the genus Triticum L. Plant Syst Evol 264:195–216CrossRefGoogle Scholar
  29. Goncharov NP (2002) Sravnitelnaya genetika pshenits I ikh sorodichej (Comparative genetics of wheats and their related species). Siberian University Press, NovosibirskGoogle Scholar
  30. Goncharov NP (2011) Genus Triticum L. taxonomy: the present and the future. Plant Syst Evol 295:1–11CrossRefGoogle Scholar
  31. Goncharov NP, Golovnina KA, Kondratenko EY (2009) Taxonomy and molecular phylogeny of natural and artificial wheat species. Breed Sci 59:492–498CrossRefGoogle Scholar
  32. Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31CrossRefGoogle Scholar
  33. Harlan JR (1992) Crops and man, 2nd edn. American Society of Agronomy and Crop Science Society of America, MadisonGoogle Scholar
  34. Hoisington D, Khairallah M, Reeves T, Ribaut JM, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci U S A 96:5937–5943PubMedCrossRefPubMedCentralGoogle Scholar
  35. Huang X-Q, Wolf M, Ganal MW, Orford S, Koebner RMD, Röder MS (2007) Did modern plant breeding lead to genetic erosion in European winter wheat varieties? Crop Sci 47:343–349CrossRefGoogle Scholar
  36. Jing-Song S, Guang-Sheng Z, Xing-Hua S (2012) Climatic suitability of the distribution of the winter wheat cultivation zone in China. Eur J Agron 43:77–86CrossRefGoogle Scholar
  37. Knüpffer H (2009) Triticeae Genetic Resources in ex situ Genebank Collections. In: Muehlbauer GJ, Feuillet C (eds) Genetics and genomics of the triticeae. Springer, Berlin, pp 31–79CrossRefGoogle Scholar
  38. Koebner R, Donini P, Reeves J, Cooke R, Law J (2003) Temporal flux in the morphological and molecular diversity of UK barley. Theor Appl Genet 106:550–558PubMedGoogle Scholar
  39. Linnaeus C (1753) Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificus, nominibus trivialibus, synonymis selectis, locis natalibus, secundum sistema sexuale digestas. Salvius, StockholmGoogle Scholar
  40. MacKey J (1966) Species relationship in Triticum. Proceedings of the 2nd International wheat genetics symposium. Hereditas 2:237–276Google Scholar
  41. MacKey J (2005) Wheat: its concept, evolution and taxonomy. In: Royo C et al (eds) Durum wheat breeding: current approaches and future strategies. Haworth, Boca Raton, pp 3–61Google Scholar
  42. Martynov SP, Dobrotvorskaya TV, Pukhalskiy VA (2005) Analysis of genetic diversity of spring durum wheat (Triticum durum Desf.) cultivars released in Russia in 1929–2004. Russ J Genet 41:1113–1122CrossRefGoogle Scholar
  43. Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Ouissenberry KS, Reitz LP (eds) Wheat and wheat improvement. American Society of Agronomy, Madison, pp 19–87Google Scholar
  44. Morrison LA (1995) Taxonomy of the wheats: a commentary. In: Proceedings of the 8th international wheat genetics symposium, Chinese Academy of Agricultural Sciences, Beijing, 20–25 July 1993Google Scholar
  45. Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737CrossRefGoogle Scholar
  46. Nesbitt M (2002) When and where did domesticated cereals first occur in southwest Asia? In: Cappers RTJ, Bottema S (eds) The dawn of farming in the Near East. Studies in Near Eastern production, subsistence and environment, no 6. Ex oriente, Berlin, pp 113–132Google Scholar
  47. Nesbitt M, Samuel D (1996) From stable crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetic Resources Institute, Rome, pp 41–100Google Scholar
  48. Nuttonson MY (1955) Wheat-climatic relationships and the use of phenology in ascertaining the thermal and photothermal requirements of wheat. American Institute of Crop Ecology, Washington, DCGoogle Scholar
  49. Ozkan H, Willcox G, Graner A, Salamini F, Kilian B (2010) Geographic distribution and domestication of wild emmer wheat (Triticum diccoides). Genet Resour Crop Evol 58:11–53CrossRefGoogle Scholar
  50. Pecetti L, Annicchiarico P, Damania AB (1992) Biodiversity in a germplasm collection of durum-wheat. Euphytica 60:229–238Google Scholar
  51. Porceddu E, Ceoloni C, Lafiandra D, Tanzarella OA, Scarascia Mugnozza GT (1988) Genetic resources and plant breeding: problems and prospects. In: Miller TE, Koebner RMD (eds) Proceedings of the VII International Wheat Genetics Symposium, I.P.S.R., Cambridge, pp 7–21Google Scholar
  52. Reif JC, Zhang P, Dreisigacker S, Warburton ML, van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864PubMedCrossRefGoogle Scholar
  53. Ren J, Sun D, Chen L, You FM, Wang J, Peng Y, Nevo E, Sun D, Luo MC, Peng J (2013) Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. Int J Mol Sci 14:7061–7088PubMedCrossRefPubMedCentralGoogle Scholar
  54. Sachs MM (2009) Cereal germplasm resources. Plant Physiol 149:148–151PubMedCrossRefPubMedCentralGoogle Scholar
  55. Shoaib A, Arabi MIE (2006) Genetic diversity among Syrian cultivated and landraces wheat revealed by AFLP markers. Genet Resour Crop Evol 53:901–906CrossRefGoogle Scholar
  56. Smale M, Reynolds MP, Warburton M, Skovmand B, Trethowan R, Singh RP, Ortiz-Monasterio I, Crossa J (2002) Dimensions of diversity in modern spring bread wheat in developing countries from 1965 when this research was conducted, all authors were employed by CIMMYT, Texcoco, Mexico. Crop Sci 42:1766–1779CrossRefGoogle Scholar
  57. Soleimani VD, Baum BR, Johnson DA (2002) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor Appl Genet 104:350–357PubMedCrossRefGoogle Scholar
  58. Szabó AT, Hammer K (1996) Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetic Resources Institute, Rome, pp 2–40Google Scholar
  59. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  60. Tanno K, Willcox G (2006) The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from north west Syria (Tell el-Kerkh, late 10th millennium BP). Veg Hist Archaeobot 15:197–204CrossRefGoogle Scholar
  61. Teklu Y, Hammer K (2006) Farmers’ perception and genetic erosion of tetraploid wheats landraces in Ethiopia. Genet Resour Crop Evol 53:1099–1113CrossRefGoogle Scholar
  62. Teklu Y, Hammer K, Röder MS (2007) Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): analysis of genetic diversity and differentiation. Genet Resour Crop Evol 54:543–554CrossRefGoogle Scholar
  63. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148PubMedCrossRefGoogle Scholar
  64. Tian QZ, Zhou RH, Jia JZ (2005) Genetic diversity trend of common wheat (Triticum aestivum L.) in China revealed with AFLP markers. Genet Resour Crop Evol 52:325–331CrossRefGoogle Scholar
  65. Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367:363–365CrossRefGoogle Scholar
  66. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284PubMedCrossRefGoogle Scholar
  67. Tsegaye B, Berg T (2007) Genetic erosion of Ethiopian tetraploid wheat landraces in Eastern Shewa, Central Ethiopia. Genet Resour Crop Evol 54:715–726CrossRefGoogle Scholar
  68. Villalobos VM, Ferreira P, Mora A (1991) The use of biotechnology in the conservation of tropical germplasm. Biotechnol Adv 9:197–215PubMedCrossRefGoogle Scholar
  69. Walters C, Wheeler L, Grotenhuis J (2005) Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15:1–20CrossRefGoogle Scholar
  70. Zavaleta ES, Pasari JR, Hulvey KB, Tilman GD (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci U S A 107:1443–1446PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. Asif
    • 1
  • A. H. Hirani
    • 2
  • S. K. Basu
    • 3
  • E. Noguera-Savelli
    • 4
  • W. Cetzal-Ix
    • 5
    Email author
  • P. Zandi
    • 6
  • R. Sengupta
    • 7
  1. 1.Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
  2. 2.Department of Plant ScienceUniversity of ManitobaWinnipegCanada
  3. 3.Department of Biological SciencesUniversity of LethbridgeLethbridgeCanada
  4. 4.Francisco de MontejoMéridaMéxico
  5. 5.Herbarium CICYCentro de Investigación Científica de Yucatán, A. C. (CICY)MéridaMéxico
  6. 6.Department of Agronomy, Takestan BranchIslamic Azad UniversityTakestanIran
  7. 7.Department of ZoologyWB State UniversityBarasatIndia

Personalised recommendations